
A Research on Scheduling Policy for Multiple Parallel Environment

多重並列処理環境用のスケジューリング手法に関する研究

by

Yojiro Nobukuni

信国陽二郎

A Senior Thesis

卒業論文

Submitted to

Department of Information Science

Faculty of Science

The University of Tokyo

on February 14, 1995

in Partial Fulfillment of the Requirements

for the Degree for Bachelor of Science

Thesis Supervisor: Kei Hiraki 平木敬

Title: Assistant Professor for Information Science



ABSTRACT
A research on general puropose parallel operating systems for distributed or parallel

multiprocessor environment, such as NUMA multiprosessor or workstation clustered
systems, is done. The aim is to achieve the efficeint concurrent execution of multiple
parallel applications in such systems.

2-level scheduling, in which scheduling is divided into user-level and kernel-level,
is useful in multiple parallel environment. It is so powerful and allocating resources
without violating applications’ parallelism and using scheduling informations from
user-level lead to a practical general puropose multiple parallel OS.

In the paper, we propose a kernel level scheduling method for a 2-level scheduling
policy that takes advantage of informations on hierachical system structure and memory
usage of each applicaton. Furthermore, its efficiency is evaluated by simulation studies
and compared to other scheduling alternatives.

Reflecting the memory usage of each process to kernel-level scheduling, processes
effectively migrate in complicated systems where memory accesses are nonuniform.
Thus system performance can be enhanced. Moreover, kernel can use the hierarchical
system structure to allocate resources according to scheduling constraints of processes.

論文要旨

NUMA型並列計算機システムやワークステーションクラスタといった並列・分散計算機
環境における、複数の並列アプリケーションの効果的な多重実行を実現する、汎用並列OS
の研究を行なう。汎用並列・分散環境では、OSのスケジューリング方法が並列アプリケー
ションの有効性に大きく影響する。

多重並列環境では、スケジューリングをユーザレベルとカーネルレベルに分離することが

考えられる。これにより、プロセスの並列性を損なわない資源の割り当てを行ない、ユーザ

レベルのスケジューリング制約情報を利用することで、汎用並列OSの構築が可能となる。
本論文では、プロセス毎のメモリの使用状況及びシステム構成の階層性を利用するカーネ

ルスケジューリング法を提案する。さらに、モデルを用いたシミュレーションによりその評

価及び、他のスケジューリング法との比較を行なう。プロセス毎のメモリの使用状況をOS
核のスケジューリングに反映させることにより、メモリアクセスのコストが不均一なシステ

ムにおけるプロセスのマイグレイションを効果的に行い、性能を上げることができる。さら

にカーネルは、システム自体の階層構造を利用することで、各プロセスの通信やメモリのア

クセスコストに関する制約をスケジューリングに導入することができる。



i



Table of Contents

1 Introduction 2

2 Related Work 5

3 SSS-CORE 6

3.1 What Is SSS-CORE? : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.2 Background : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 6

3.3 Features of SSS-CORE : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 7

3.4 Target System : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3.5 Execution Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 8

3.6 Resource Management : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 9

3.7 Kernel-Level Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 10

4 Kernel-Level Scheduling 11

4.1 Role of Kernel-Level Scheduling : : : : : : : : : : : : : : : : : : : : : : : 11

4.2 Scheduling Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : 13

4.3 Priority Computation Scheme : : : : : : : : : : : : : : : : : : : : : : : : : 14

4.4 Constructing a Kernel-level Scheduling : : : : : : : : : : : : : : : : : : : 15

4.4.1 Problems of Scheduling Method : : : : : : : : : : : : : : : : : : : 16

4.4.2 Problems of Scheduling Constraints : : : : : : : : : : : : : : : : : 16

4.4.3 Problems of Priority Computing : : : : : : : : : : : : : : : : : : : 17

5 Scheduling Algorithm in The Model 18

ii



5.1 Conditions in the Simulation Program : : : : : : : : : : : : : : : : : : : : 18

5.2 Scheduling Constraints : : : : : : : : : : : : : : : : : : : : : : : : : : : : 19

5.3 Data Structures and Scheduling Management Tree : : : : : : : : : : : : : 20

5.3.1 Data Structure of Scheduling Constraints : : : : : : : : : : : : : : 20

5.3.2 Data Structure and Scheduling Management Tree : : : : : : : : : 20

5.4 Priority Computation Scheme : : : : : : : : : : : : : : : : : : : : : : : : : 23

5.4.1 Method for Computing Degree of Intensity of Constraints : : : : 23

5.4.2 Method for Computing Degree of Satisfaction of Constraints : : : 23

5.4.3 Parameters : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 23

5.5 The Algorithm : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 26

5.6 Possible Refinements of The Algorithm : : : : : : : : : : : : : : : : : : : 30

5.6.1 Problems when Checking Child Nodes : : : : : : : : : : : : : : : 30

5.6.2 Moving to Home Node : : : : : : : : : : : : : : : : : : : : : : : : 31

6 Simulation Model 32

6.1 System Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 32

6.1.1 Construction of Network System : : : : : : : : : : : : : : : : : : : 32

6.1.2 Memory System : : : : : : : : : : : : : : : : : : : : : : : : : : : : 33

6.2 Process Executoin Model : : : : : : : : : : : : : : : : : : : : : : : : : : : 34

6.2.1 Memory Access Model : : : : : : : : : : : : : : : : : : : : : : : : 36

6.2.2 Communication Model : : : : : : : : : : : : : : : : : : : : : : : : 36

6.3 Experiment : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

7 Future Work 37

7.1 System Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

7.2 Kernel-Level Scheduling : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

8 Conclusion 39

iii



List of Tables

5.1 Values used for coefficients for priority computing. : : : : : : : : : : : : : 24

iv



List of Figures

5.1 Model organization with data structures and 2-way 2-level scheduling

management tree. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 22

5.2 One scene from data collection at node N for process P. : : : : : : : : : : 27

5.3 An example of Home Nodes. : : : : : : : : : : : : : : : : : : : : : : : : : 29

v



Acknowledgement

I would like to thank Associate Professor Kei Hiraki for helpful advices and heartful

encouragements. I am grateful to Takashi Matsumoto for useful suggestions and accu-

rate information for building the simulation model in the paper. In addition, I would

like to thank to all other members of Hiraki Laboratory.

1



Chapter 1

Introduction

To acquire greater processing power, parallel computing systems have been gaining

increasing attention. For that goal, an amount of Uniform Memory Access (UMA)

systems have been constructed and much research were done. But as those researches

showed, small-scale UMA system soon came up with marginal performance of pro-

cessing power. System bottlenecks such as contention of memory access due to shared

memory structure and busses that were frequently used as hardware for interconnection

network were the primary reasons for that limitation. Moreover, making a large-scale

UMA multiperocessor system is costly and it is hard to enlarge the number of processor

elements.

But rapid progress in micro electronic technologies made it practical to construct a

large-scale NUMA multiprocessor system with a large number of relatively low cost

and simple components.

In addition, advanced techniques and methods gained by researches on parallel

applications and UMA systems such as; improved compile techniques; program and

data distribution method; useful scheduling method; and synchronization mechanisms,

are helpful for effective use of large-scale NUMA multiprocessor systems and played

important roles in making it practical. Consequently, those systems are not only coming

near to meet our processing needs, but also showing possibility of replacing the so called

mainframe computers and the power of parallel processing in distributed environment.

2



For this reason, providing a multiprogramming environment to achieve high sys-

tem utilization in large-scale multiprocessor systems is supreme issue. Therefore, it

is important to establish operating system for general use of NUMA multiprocessor

system.

We are exploiting a general purpose multiple parallel OS kernel for Non-Uniform

Memory Access (NUMA) multiprocessor systems called SSS-CORE. It is a time shared

system that accomplishes multiple user and multiple jobs environment which is an

inevitable property for an general purpose system. At the same time, it aims at not

decreasing the high efficiency of parallel applications, which have been inconsistent

with general purpose systems.

For a parallel application to gain high efficiency, it is very critical to schedule its

threads simultaneously, close to each other, and onto processors and memories where

it have been scheduled before. This gives importance to schedulling method.

However, some sorts of things differ between applications. For example, the fre-

quency of synchronization and memory pages it requires through a execution. In

addition, the timing applications produce synchronizations, the palcement of memory

pages when a memory access occurs, and etc., cannot be statically predicted by sched-

uler.

Our idea is that providing user-level an interface to exchange scheduling hints, or

constraints, with kernel-level enables scrupulous resource allocation that satisfy each

application’s demand. Thus overall performance is enhanced and constructing generall

purpose parallel OS becomes practical.

In the paper, we propose a kernel level scheduling method for a 2-level scheduling

policy that takes advantage of informations on hierachical system structure and memory

usage of each applicaton. Furthermore, its efficiency is evaluated by simulation studies

and compared to other scheduling alternatives.

The paper is constructed as follows. We briefly survey SSS-CORE operating system

3



kernel in chapter 3 together with its background and features. An overview of kernel-

level scheduling is given in chapter 4 with our main ideas and problems. In chapter

5, details of kernel-level scheduling method implemented in the model is described.

Chapter 6 explains construction of the model. Future work that include remaining

studies of kernel-level scheduling in 2-level scheduling policy for SSS-CORE and re-

quired improvements of the simulator are showed in chpater 7. At last, we conclude in

chapter 8.

4



Chapter 2

Related Work

In contrast to UMA multiprocessor systems, relatively small amount of research has

been done on large-scale NUMA multiprocessors. Zhou and Brecht[1] proposed a

scheduling algorithm based on processor pools. They divided processors into abstract

groups and called them processor pools. Each pool has a single run queue shared by

all the processors in the pool. Though the study stressed the effectiveness of using

processor pools by analytic simulation on system and workload models, a problem can

be pointed out. Large parallel jobs spanned to multiple pools and threads of such jobs

were not guaranteed to be scheduled simultaneously. They paid little attention on this

issue because they worked on so called fork-and-join execution model. But, for parallel

applications that perform many communication between their threads, it is critical to

schedule them simultaneously, because delayed time caused by synchronization do

extraodinary harm. In [2], they gave another analysis on a NUMA system. they

studied on stochastic scheduling for fork-and-join model. model in a NUMA system.

Fork-and-join structured jobs can be expressed in our model by phase change.

As for exchanging scheduling information, useful methods to make interfaces be-

tween user-level and kernel-level is proposed in [3] and [4].

5



Chapter 3

SSS-CORE

3.1 What Is SSS-CORE?

SSS-CORE is a general purpose multiple parallel OS kernel for Non-Uniform Memory

Access (NUMA) multiprocessor system. It is a time shared system that accomplishes

multiple user and multiple job environment which is an inevitable property for an

general purpose system. It provides a way for users to give OS kernel a set of schedul-

ing hints called constraints for resource allocation. They are used when scheduling.

Furthermore, optimization of execution code is supported by the low cost interfaces

between parallel applications and SSS-CORE to exchange resource allocation informa-

tion.

A prototype system is currently under construction.

3.2 Background

To acquire greater processing power, parallel computing systems have been gaining

increasing attention. For that goal, an amount of Uniform Memory Access (UMA)

systems have been constructed and much research were done. But as those researches

showed, small-scale UMA system soon came up with marginal performance of pro-

cessing power. System bottlenecks such as contention of memory access due to shared

6



memory structure and buses that were frequently used for network hardware were the

primal reasons for that limitation. Moreover, making a large-scale UMA multiperoces-

sor system was costly and it was hard to enlarge the number of processor elements in

the system.

But rapid progress in micro electronic technologies made it practical to construct a

large-scale NUMA multiprocessor system with; a large number of relatively low cost

processors; and high performance and inexpensive network hardwares. In addition,

advanced techniques and methods obtained by researches on parallel applications and

UMA system such as; improved compile techniques; program and data distribution

method; useful scheduling method; and synchronization mechanisms, are helpful for

effective use of large-scale NUMA multiprocessor systems and played important roles

in making it practical.

but also showing possibility of replacing the so called mainframe computers and

power of parallel processing in distributed environment. Therefore, it is important to

establish operating system for general use of NUMA multiprocessor system.

3.3 Features of SSS-CORE

To be a general purpose parallel OS, it must be a time sharing system and support

multiple user and multiple jobs. In addtion, mechanisms are needed to support pro-

grammer and compiler level optimization. For example, free resource management

in the range of resource protection; citation of constraints on resource allocation; and

opening scheduling information to user-level for runtime optimization. The followings

are chief features included in SSS-CORE.

� 2-level scheduling (Kernel-level and user-level scheduling) targetted to NUMA

system.

– Introducing topology and communication cost to kernel-level scheduling.

7



– Reflecting memory access (to remote memories and secondary memory) cost

to kernel-level scheduling.

� Management of memory resources and secondary memory.

– Reflecting allocation information of physical memory pages to kernel-

scheduling.

� Non-blocking I/O system.

3.4 Target System

The target system of SSS-CORE is NUMA multiprocessor system. It may be a dis-

tributed memory parallel computer, a destributed shared-memory computer, worksta-

tion cluster system, or etc.. The topology of the interconnection network can be of any

kind, such as hierarchical clustered network, or ring network. In addition, the type of

the actual hadware of the interconnection network ,suche as buses or switches, is not

cared. But initially we only consider hogeneous cluster system for simplicity.

Remote memory access also can be supported by any type of system such as special

hardware, software-based assynchronous communication, or virtual shared memory

system, like IVY[5]. Futhermore, one job does not require physical memory more than

total amount of memory in overal system, and secondary memory is assumed to be

same distance away from every cluster. So the order of the cost of memory access

increases in the order of in-cluster memory access, cluster-cluster memory access, and

secondary memory access.

3.5 Execution Model

We call the end part of the system network cluster, which may be consisted of a

processor with one memory bank or a small-scale UMA system. A stream of instructions

allocated to a processor is called thread. A parallel process , a process, or job, is made

8



from multiple threads. A set of threads that belong to the same cluster is called

subprocess. Process is the object for kernel-level scheduling. When a process changes

its scheduling constraints, it changes its phase. For example, requesting more processor

to kernel is a change of phase. A process can change phase at any time, however, if

it makes execution impossible, the whole process will be preempted. To support this

execution model; each resource must be preempted at any time ;and each process, when

time quantum expired and on phase change.

3.6 Resource Management

2-level scheduling policy is adopted as SSS-CORE’s scheduling policy. It is devided

into 2 parts. One is kernel-level scheduling and another is user-level scheduling.

Kernel-level scheduling focuses on resource allocation to processes, on the other hand

user-level schecduling is interested in scheduling threads whithin a process.

Resources includes processors, memory pages, and tracks or sectors of hard disks.

For allocating resources, we arrange a virtual resource management tree that is con-

sistent in structure with actual physical system structure. The structural equivalence

may work well to help each node of the tree to overview amount of resources be-

low them in order to reflect communication and memory access costs to kernel-level

scheduling. Among resources, we especially focus on memory pages. Amounts of

pages are maintained every hierarchy of the scheduling management tree and every

processes to utilize in allocating resources to parallel processes. Resources are allocated

by kernel-level scheduler to user-level scheduler and returned vice versa. The kernel-

level scheduling is done by kernel-level scheduler (KLS). It is one of mechanisms or

functions in SSS-CORE.

9



3.7 Kernel-Level Scheduling

SSS-CORE operating system is constructed as a time-sharing system. Time slices come

when time-quantum expires. Since we target on large-scale NUMA system and aime

at scheduling multiple parallel applications, the time-quantum will be set somewhere

between 100 msec and a few seconds. It is ralatively large when constrasted to that of

current operating systems, but it fits to the goal of our system. It is assumed that cost

of kernel-level scheduling can be ignored because of the relatively large value of the

time-quantum.

When a time-slice comes, every processor is preempted and the kernel-level sched-

uler starts. It first re-compute the priorities of the processes using dynamical informa-

tion of resource allocation and resource usege of each process. Processes with higher

priorities are scheduled first according to the scheduling information and constraints

given by each of them.

We assume that processor power is not consumed on data transfering between phys-

ical memory and secondary memory. So disk accesses needed for the next scheduling

is done between time-slices as much as possible. In addition to this, data on TLBs are

saved on preemption and they are used as working set information. Data needed for

scheduling are prefetched on time-slice previous to the actual scheduling time, and

schedulinig is done one time-quantum ahead.

Details of kernel-level scheduling, with which the paper is concerned, is described

in the followng chapters.

10



Chapter 4

Kernel-Level Scheduling

4.1 Role of Kernel-Level Scheduling

Scheduling is one of a very important part of general puropose parallel OS. It greatly

affect the performance of the system because of the nature characteristic to parallel

applications on multiprocessor system.

Evidently, accessing remote memory takes more cost than accessing local memory.

And, in a cluster structured system, on which the model target on, accessing memories

out side of a cluster takes more cost than accessing memory within a cluster. Obiously,

large cost for accessing further cluster. Furthermore, accessing secondary memory

storage is more and more costly.

Communication also takes time. And as the distance between the sender and

receiver becomes larger, communication take more cost. In addition, if a lot of commu-

nication take palce at the same time witin a area, the network becomes too crowded

for too many network transactions, which is always the case with busses. This causes

communication to cost more than when interconection networks are not crowded.

Now, parallel applications, especially fine-grained parallel applications, have a lot

of synchronization point in a execution among their multiple threads, sometimes be-

tween threads of different applications. As number of synchronization increases, the

possibility of occurrences of above situations arises. Suppose the execution of one of

11



the threads of a parallel appplication is delayed, other threads waiting for the delayed

thread to synchronize with it is also delayed.

The more severe the synchronization condition is, the degree of the delayed time

becomes greater. When one synchronization is delayed, it affect the nexts one that is

independent of the previous one. If this repeats in chain reaction among synchroniza-

tions, the time of whole exectution of the application is enormously delayed.

Therefore, to avoid delayed synchronization, it is essential to schedule threads of a

single parallel application as close to each other as possible and also simultaneously,

because of the conditions that; different cost in accessing different classes of memories;

and contention in network transaction caused by conccurent access to memories or

mulltiple communications.

Moreover, parallel applications too have locality of memory access in space and

time. It is a property that a fragment of memory is frequently accessed and a piece of

memory once accessed will soon be accessed again. So, scheduling an application onto

processors where it has been previously scheduled is also important.

In summary, it is very critical to schedule the threads of a parallel application

simultaneously, close to each other, and onto processors and memories where it have

been schedules before as possible as the scheduler can manage. This gives importance

to schedulling method.

However, some sorts of things differ between applications. For example,the fre-

quency of synchronization and memory pages it requires through the execution se-

quence. In addition, the timing applications produce synchronizations, the palcement

of memory pages when a memory access occurs, and etc, cannot be statically predicted

by scheduler.

Our idea is that providing user-level an interface to exchange scheduling hints

with kernel-level enables scrupulous resource allocation that satisfy each application’s

demand. Thus overall performance is enhanced and constructing generall purpose

parallel OS becomes practical.

12



We call the hints scheduling constraints. To achieve previously mentioned schedul-

ing properties, the scheduling constraints must include each application’s request for

resource usage, such as number of processors and memory pages. And also, memory

migration must be carefully treated to manage the tradeoff between execution time

acquired by a job being scheduled and accessing remote memory, for pages of waited

jobs may be removed from the memories where it have been scheduled before.

The algorithm for kernel-level scheduling in the 2-level scheduling policy must work

well to achieve these properties. But it is not simple to construct such an algorithm.

In following sections, examples for scheduling constraints and priority computation

scheme are given to concretely cover the concept of kernel-level scheduling in 2-level

scheduling policy. Furthermore problems when constructing a kernel-level scheduling

method is shown.

4.2 Scheduling Constraints

Examples of scheduling constraints given to kernel-level scheduler from user-level are

as follows. Notice that they are just ideas. Variation of constraints and their application

to scheduling method is one of problems that must be cleared in future.

1. Constraints on number of processors

(a) Fixed nmber of processors: a process is always scheduled to fixed number

of processors if possible.

(b) Desired number of processors: a process is scheduled to number of pro-

cessors between upper limit constraint and lower limit constraint. Giving

as many processors as possible is a natural idea, but the decision is left to

scheduling algorithm.

(c) Variable initail number of processors: processes just forked get variable

number of processors. This may fit to fork-and-join type of applications.

2. Constraints on communication cost

13



(a) Fixed form of area: a process is always scheduled to processor area that is

same if shape. This constraint can possibly be expressed by communication

cost.

(b) Upper limit of communication cost: processors allocated to a process can

communicate with each other within the cost given by the constraint.

3. Constraints on memory access cost

(a) Constraint limiting every memory access within a clluster. No pages will be

allocated outside the cluster during execution of the process.

(b) Upper limit cost of access to remote memory: memory pages allocated to a

process is accessable within the cost given by the constraint.

4. Constraints on memory migration

(a) Upper limit cost of memory access on migration: after scheduling process

mifration can occur within the access cost the constraint indicates. In addi-

tion, forced-migration constraint can be given. If a process has not completed

migrating when time slice has come, it can proceed migrating if it’s migrating

to memories accessable within the cost given by the constraint.

(b) Lower limit rate of ramainning pages: a process whose physical pages remain

less than the limit will become a candidate for migration in scheduling.

4.3 Priority Computation Scheme

Concepts of scheduling constaraints are introduced to reflect process’ demand for

resources to kernel-level scheduling. But the resources must be fairly shared among

processes. Therefore a adequate way for computing priorities must be defined. That

is, as a process occupies larger amount of resources and imposes harder scheduling

constraints, it’s priority must be forced to age more. To meet our goal, following items

14



are used for re-computing priority. Here again, they are just ideas. Variation of items

and adequate formula are left to be researched.

1. Product of the number and used time of occupied processors (Cpnpt).

2. Product of the number of physical pages acquisited within the scheduled area

and the time scheduled to the area (Cmnmt).

3. Degree of difficulty of scheduling constraints (Rc).

4. Degree of satisfaction of scheduling constraints (Sc).

5. Product of the number of waisted processors and waisted time destributed to

processes according to their used number of processors (Cwpnwpt
np
np

).

6. The exsistence of waiting processes (fwait = 0 or 1).

7. Reduction rate for forced-migration (fmg = Cmg or 1; 0 < Cmg < 1).

8. Product of waited time and return time coefficient (Cr(1� t)).

These are for making priorities of waited processes higher.

For example, using above terms, the aging value of the priority of a process can be

computed by

(Cpnp + Cmnm)rcsc + Cwpnwp
np

np
) fwaitfmgt� Cr(1� t):

4.4 Constructing a Kernel-level Scheduling

Some details about kernel-level scheduling are mentioned in the previous section.

However, some of them lacked accurate definition, computing method, or explicit

usage. They lacked because they are still unsolved. And also, we did not touch

the matters that are more directly related to scheduling method such as scheduling

algorithms, their implementation, data used for scheduling management and their

destribution, and etc. In this section, we clear out what must be considered to construct

a kernel-level scheduling system as well as the lacked stuffs.

15



4.4.1 Problems of Scheduling Method

For allocating resources, we arrange a virtual resource management tree that is consis-

tent in structure with that of actual physical interconnection network. For a flat system

a virtual scheduling management tree is used. We must define data structues for each

cluster, or node of the management tree, so that effective scheduling algorithm can

be made and using tree can be advantageous. For example, data structure for root of

the tree may contain; (1)scheduling constraints of each process, (2)total resource in

nodes just below root, and (3)number o free processors in nodes just below root, and

that for tree node; (1)IDs of processes running below the node, (2)number of occupied

processors for each process, (3)number of occupied total physical memory pages for

each process running or waiting, and (4)number of free physical memory pages the

node has. Data used for scheduling as well as tree node data must be distributed in

the system because; usually system does not have general computing resource on the

part that corresponds to nodes in the management tree; and system must be scalable.

Data structure and destribution is essential also because they are collected down from

tree leaves upto tree root on time-slices before actual scheduling computation to keep

all the scheduling data consistent all over system. So defining a way for mapping these

data onto processors is important. Moreover, the computation stage of kernel-level

scheduler itself will be carried parallel for the sake of scheduling performance and be-

cause of data destribution. As mentioned in section 3.7, cost of kernel-level scheduling

is ignorable because of relatively large value of the time-quantum. But scheduling

performance must be efficient enough not to violate this assumption. And just as ordi-

nary parallel applications, data destribution and parallel computation scheme must be

discussed together.

4.4.2 Problems of Scheduling Constraints

There are some problems in expressing and using scheduling constraints showed in 4.2.

Constraint on memory access cost when migrating is an example of constraint that have

16



expression problem, since the memory access cost it restricts is not clear for on which

processors it is defined. The value of constraint that limits lower rate of remaining page

for deciding when to migrate a process is up to each application, but ther possibly be a

good value for it. The usage of each constraint is related to scheduling algorithm and

must be carefully studied. Furthermore, a variation of constraints must be studied to

find out which is useful in scheduling for there may be another constraints to be used.

4.4.3 Problems of Priority Computing

The example formula for computing priorities cannot be used without modification.

For a priority might diverge and there is no gurantee of fairness in resource allocation.

Moreover, the values of coefficients showed, method for computing degree of difficulty

of constraints, and that for degree of satisfaction of constraints are not defined.

Computing priorities must be a good enough for fair-sharing resources among

processes. There possibly be affinity between the priority computation methods and

scheduling algorithms. A set of terms and a formula may well suite to a scheduling

algorithm and another sets to another algorithms.

17



Chapter 5

Scheduling Algorithm in The Model

In the chapter, the algorithm of kernel-level scheduling implemented in the model is

shown. Data prefetching is not conserned. Before showing the algorithm itself, parts

that are needed when constructing a kernel-level scheduling are mentioned. First,

some conditions of the program that must be noted are explained. Then scheduling

constraints and priority computation scheme used in the model are described. These

are very important because data that must be collected when scheduling depend on

them. After that comes the algorithm. Though it is a very simple version with only a

few scheduling constraints are concerned and cannot handle process migration, some

considerations that can be extracted from the algorithm to refine it is given next. Finally

we observe the kernel-level scheduler itself.

5.1 Conditions in the Simulation Program

Some data for emulating parts of the system are global to the simulation program.

Root of the scheduling management tree is declared as a global variable. This

is because so far we are not concerned about mapping strategy of distributing data

structures representing tree nodes amon processors, and the tree exist independently

from data structures for processors and memories except leaf nodes. Each leaf node

and processor data structures are in relation of one-to-one correspondence.

18



Since the time required for kernel-level scheduling is ignored for the relatively large

value of time quantum, it is not included in execution time of whole system. In addition,

during time slice, every processor is preempted and wait for a process to be scheduled

until scheduling is completely finished.

As mentioned before, interconnection network of the model is not explicitly imple-

mented. So tracing through pointers to tree nodes and function calls called with these

correspond to communication or data moves through the network in practical system.

Process queue is also maintained as global data. Though scheduling data that must

be renewd on every memory actions when processes are considered to be running are

saved in the data structure included in the leaf nodes that corresponds to the processors

where the processes are scheduled, data which are unique to processes are kept in the

queue. Scheduling constraints of a process is one example of the type of data.

Another global data are that for managing memory system. Informations of every

virtual page, such as those of home page and copy pages, are kept in a place. FIFO

order of copy pages are kept there too for page replacement.

5.2 Scheduling Constraints

Scheduling constraints used in the model are,

1. constraint on number of processors—fixed number of processors,

2. constraint on communication cost—upper limits of communication cost.

Those that are easy to be treated in algorithm are selected. Constraints 2 is calculated

from the level of the highest node in scheduling management tree that data pass when

communicating or accessing remote memory within the cluster.

Using many, complicated constraints results in complex algorithm. Such an algo-

rithm is too difficult to be inplemented from the beginning. That is why constraint on

migration is not taken. Migration is not considered in the algorithm.

19



5.3 Data Structures and Scheduling Management Tree

Data structures for representing scheduling constraints, computing priorities of pro-

cesses, and managing scheduling must be defined to construct a kernel-level scheduling.

5.3.1 Data Structure of Scheduling Constraints

The algorithm uses scheduling constraints showed in section5.2. The data structure is

simple, a set of the constraints.

typedef struct constraint_t {

int ul; /* requested number of processors. */

float comul; /* communication upper limit */

} Constraint;

5.3.2 Data Structure and Scheduling Management Tree

An image of scheduling management tree with data structures of the model can be

acquired in figure 5.1. Every node except root of the scheduling management tree

holds following items.

� Level. A leaf node is 0 level and incremented by one as going up one step.

� Maximum cost of communication within the cluster represented by the node.

� Maximum cost of remote access within the cluster represented by the node.

� Total amount of processors and physical pages in the cluster represented by the

node.

� Total amount of free processors and free physical pages in the cluster represented

by the node.

� Array of pointers to child node.

� A pointer to parent node.

20



� Array of data structures to maintain scheduling information for each process.

Data structures for maintaining each process’s scheduling information in these nodes

include,

� processs ID.

� total amount of processors and physical pages a processes occupies below the

node.

Data structure of root of the scheduling management tree is almost the same as that

of other nodes. The contents of data structure to maintain each process’s scheduling

information is different from that of other nodes. And root has queues of running

processes and waiting processes. A process is running when scheduled and waiting

when not scheduled and no other process state is defined in the model.

Data structure for maintaining each process’s scheduling information in root in-

cludes,

� processs ID.

� priority.

� data structure of scheduling constraints.

� waited time. If this is 0 then the process was scheduled all the time before the

time slice.

� total amount of processors and physical pages a processes occupies throughout

the system.

� informations required to express each proccess’s address space, execution speci-

fication, and stuffs needed for process execution. the node.

Information except that of resources which are specific to processes is globally main-

tained as part of data in proess queues of root.

21



Memory pages of process A

Memory pages of process B

processors

memories

Memory pages of process C

root

level 0

level 1

level 2

Scheduling Management
Tree

total processors, pages

free processors, pages

pid
total pr,pg

list of process data

running & waiting queue

pid, priority
constraints
total pr,pg ,etc.

total & free resources

Figure 5.1: Model organization with data structures and 2-way 2-level scheduling

management tree.

22



5.4 Priority Computation Scheme

Priorities are floating point data and calculated by following way.

5.4.1 Method for Computing Degree of Intensity of Constraints

Using the constraints (see 5.2), Rc is computed by,

Rc =
ul

number of PEs
�
max communication cost

comul
:

5.4.2 Method for Computing Degree of Satisfaction of Constraints

Processes that do not satisfy every constraints (see 5.2) is not scheduled by the algorithm.

So, Sc is 0 or 1.

5.4.3 Parameters

When a process is forked, its initial priority is set to 0. Aging value calculated by

following way will be added on each time slice.

Same terms that are proposed in section 4.3 except fmg are used to calculate priorities.

Using these terms, amount of resources used by a process is computed by

used resources = (Cpnp + Cmnm)RcSc:

See previous subsections for computing methos of Rc and Sc . The amount of resources

waisted by a process is computed by

waisted resources = Cwpnwp
np

np
:

Here, np is total number of processors used by all processes in the previous time

quantum. It can be calculated with root data structure as,

np = root->total.pr � root->free.pr

Let tschd represent the time the process was scheduled to the resources in fraction to

the value of time quantum. That is, 0 � tschd � 1. If a process changes its phase (see

23



Coefficient Value

Cp 1.0

Cm 1.0

Cwp 1.0

Cr 1.0

Table 5.1: Values used for coefficients for priority computing.

section3.5) before time slice comes, then tschd < 1. With tschd together with fwait, the

penal part of the aging value is computed by

(used resources+ waisted resources) fwaittschd:

When scheduling, if there are one or more processes waited in the waiting queue during

the last time quantum, and the process itself was scheduled for some time during that

time, then the value make sense.

A process must profit from waiting. Using waiting time twait (naturally, twait =

1� tschd) of a process, the value,

retunrn time = Crtwait

will be subtracted from the aging value. But since the algorithm does not manage phase

change, tschd = 1 only if the process was scheduled, and twait = 1 only if the process

waited. Otherwise, tschd = 0 and twait = 0. In total, the aging value of a process is

calculated by

aging value = (used resources+ waisted resources) fwaittschd � return time:

Since priority is higher for lower value, aging value is added to old priority.

To avoid priorities from diverging, sum of aging value of processes (they are pos-

itive!) in running queue is evenly divided to processes in waiting queue. Coeficients

Cp; Cm; Cwp; and Cr are parameters in the simulation program and must carefully be

24



set to addequately achieve the fair-sharing of resources among processes. But simple

values showed in table 5.1 are used for initial experiments.

25



5.5 The Algorithm

The scheduling algorithm is literally expressed as follows.

1. Calculate values needed for computing priorities that are common to every pro-

cess.

(a) Number of waisted processors equals to the value of number of free proces-

sors kept in root data structure. It is renewd on every time slices and every

phase change.

(b) Number of processors used used by all processes (np) equals to difference

between number of total processors and free processors kept in root data

structure.

(c) If queue of waiting processes is empty then fwait = 0 else fwait = 1

2. Correct resource information throughout the tree including root node. See

figure.5.2.

(a) Let each node’s data of number of free processor equals to that of total

number of processr.

(b) Collect data of; each node’s number of free pages; and each node’s each

process’ number of total occupied processors and physical pages, down

from leaf nodes up to root node. One scene from the step is showed in figure

5.2.

3. Compute and set new priorities to all processes. Information that must be calcu-

lated for each process is kept in their own data structure in root.

4. Merge the two queues, running queue and waitng queue, and sort by priority.

5. Select a process with highest priority and do next steps.

6. Set allocation mode. If the process is a new process or a process with no physical

page, the allocation mode is NEW PROCESS, otherwise NORMAL PROCESS.

26



7. Strating from root of the scheduling management tree, move to the home node of

the process. (A home node will be explained in the following part of the section.)

8. Try to allocate processors under the node. This is done by allocation algorithm

shown in the following part of the section.

9. If failed, enqueue the process to waiting queue.

If success, enqueue the process to running queue.

10. If there is no processors left, then put all processes into waiting queue. else, goto

step 5 and select next process.

11. Finally, try to allocate failed processes that may migrate and new processes (pro-

cesses who occupy no physical page in the system).

child[0].free.pg child[1].free.pg child[2].free.pg child[3].free.pg

N

N.free.pr=N.total.pr
N.free.pg=sum(child[i].free.pg)

P.total.pr=0
P.total.pg=sum(child[i].P.total.pg)

child[1].P.total.pg child[2].P.total.pg child[3].P.total.pgchild[0].P.total.pg

To upper nodepr : processor

pg : page

0

1 2

3
P : a process

Figure 5.2: One scene from data collection at node N for process P.

Home Node Home node of a process is a node that includes all the processors previ-

ously it was scheduled in the subnetwork below the node. Figure 5.3 gives an

27



example. A simple algorithm used in the model for moving to home node is as

follows.

1. If the node is a leaf (level = 0) then it’s the home node. exit.

2. else

(a) If the allocation mode (see step 6 of scheduling algorithm) is

NEW PROCESS, search child nodes in a fixed order and select a child

that satisfies the constraints of the process with First Fit Algorithm. If

no child could be selected, retun the node (it’s the home node).

(b) If the allocation is NORMAL PROCESS, search among child nodes, in

which the process has any physical page, in a fixed order and do the

same as above.

3. Apply the algorithm to the selected child node.

Allocation Algorithm The algorithm for allocating a process starting from a node of

the scheduling tree is literally expressed as follows. This algorithm is applied to

a node in the tree called with number of processors as a request to it. It returns

total number of processors allocated for SUCCESS, and 0 to imply UNSUCCESS.

1. Search the child nodes in a fixed order, for example left to right.

(a) For a new process, (a process who occupy no physical page in the system)

check each child and keep the number of free processors below it.

(b) For other processes, check each child where the process occupy more

than a page and keep the number of free processors below it.

2. If not enough free processors were found in total return 0.

3. Else, apply the algorithm to each child node with the number of free proces-

sors found in each, only if that’s positive. (Avoiding total number exceeding

the request, lesser of the number of processors found free in a child and what

is left to satisfy the request is kept.)

28



Memory pages of process A

Memory pages of process B

root

process B’s
Home Node

process A’s
Home Node

Figure 5.3: An example of Home Nodes.

29



4. Reaching this step implies allocation was wholly SUCCESS below the node.

So, renew the information of free processor it has in its data structure.

5. Return the number of allocated processors to imply SUCCESS.

5.6 Possible Refinements of The Algorithm

The alogorithm showed is a simple version and process migration is not concerned.

But carefully obaserving, some ideas or refinements possibly be taken into new version

algorithms are found.

5.6.1 Problems when Checking Child Nodes

As the first step in allocation algorithm, child nodes are checked whether requested

number of processors can be prepared in total. As for the step, two kinds of commu-

nication is required. One for requesting child nodes to check and the other for child

nodes sending back the results of the checking to their parent node, the requesting

node. Though they can be handles parallel, but when height of the tree, or the num-

ber of hierarchy in acctual system structure, is large, it may become bottleneck as for

scheduling speed.

If a node have data of number of free processors of each child within its data

structure, some of communication can be avoided. Checking child nodes is required

only if they still have processors not allocated. So, as scheduling proceeds, many of the

free processor data becomes 0 and redundant messages to child nodes who have no

processor left to be allocated can be avoided. Correcting data in step ?? of scheduling

algorithm must be slightly altered. That is, data of a child node in a node must be kept

equivalent to data in actuall node.

Another idea is to let a node have every data needed to check child nodes. In this

case, a communication is needed only when actually applying allocation algorithm to a

child node. But those data include resource data of every process of all the child nodes.

30



So, the amount of that may not be ignorable.

5.6.2 Moving to Home Node

Step 7 of scheduling algorithm can be improved. The idea is to save the home node

data of a process in process data in root node. Every time a process is scheduled, keep

the home node information. Since a new process and a process that have no physical

page in the system do not have their own home nodes, the algorithm of moving to a

home node is applied to these processes. This way, we can move directly to the home

node and start allocation right away. But in case that allocation was unsuccess, we

must move up to have enough processors.

31



Chapter 6

Simulation Model

To estimate how effective the scheduling policy is, we made a model of a system and

simulated on it. For preciseness, the model must reflect the practical situations as much

as possible. But since we are trying to experiment on large-scale NUMA multiprocessor

system that consists of several hundreds of processors at least, which may be too costly

to simulate in a practical time, everything cannot be considered in the system from

the very beginning of the studies. So far, not all of the features that SSS-CORE has is

planning are implemented in the model.

6.1 System Model

6.1.1 Construction of Network System

The system is a NUMA multiprocessor characterized system that consists of clusters.

The topology of the interconnection network of the system is k-way and n-level com-

plete tree. Beginning from the root, the network branches into k different directions

toward subnetworks, and this is repeated for n times. Each inner node represents a

cluster. No processing unit is on inner nodes of the tree. On each of the end part of the

network, that is, on each leaf node of the tree, single processor is connected. Processors

are homogeneous and have the same amount of main memory and processing power.

The interconnection network is not directly implemented in the program so far. But

32



carefully choosing the values or computation method of parameters, the concept of

difference in communication cost and remote memory access cost can be expressed,

which is essential for the research of the paper. Furthermore, by altering the values

of network parameters, differences in communication cost of parallel computers and

worksation cluster system can be expressed.

Though SSS-CORE does not care about the actual hadware of the network system,

clusters are assumed in the model to be connected by busses, which are cheap and most

frequently used currently, especially for connecting workstations as well as in multi-

processor systems.. But consequently, network transactions are not treated correctly. A

bus might transfer more than one data, or messages, at one time.

6.1.2 Memory System

There are two important assumptions for memory system. One is about difference

in memory access cost and other is about memory consistency method in the shared

memory system. Hard disk is placed abstractly at somewhere in the system, where

accessing it costs the same from each processr. It is too not explicitly implementesd in

the model. Accessing hard disk is expressed by giving very lage value for the access.

The order of memory access cost increases in the order of (1) in-cluster memory access,

(2) cluster-cluster memory access, and (3) secondary memory access. This condition

can be expressed in formula as,

(1)� (2)� (3).

A hardware mechanism to support shared memory system is assumed to be pro-

vided. Memories are treated by pages and pages are represented by sequencial virtual

page numbers. FIFO is used as page replacement algorithm so far. The process that

loaded the page to be replaced is called ower process. The owner process of each page

must be maintained. This is because the total number of physical pages that a process

owns is used in scheduling and must be kept precise.

33



The consistency of pages are managed by write-through policy. When a page is

not found anywhere memory in the system, it is loaded from the disk and becomes

home page, and the memory loaded it is called page home. IF a access to a page that

are not in the memory occurs, the page is loaded from the page home of the page and

the loded one is called a copy page. For a write to a page in a memory changing its

contents, consistensy is somehow managed by the hardware and all the copy pages are

kept valid. On page replace, If the page that is going to be replaced is a copy page,

no action is taken. But if it is home page, then it is replaced and another copy page

becomes home page in fifo order which is kept on loading.

Information on number of pages a process occupies in a memory is stored in the

corespoinding data structure of leaf node of scheduling management tree. It is in-

cremented when a page is moved into a memory and decremented when a page is

removed from a memory.

6.2 Process Executoin Model

Processes are forked during a simulation in a fixed rate starting with random paral-

lelism. Current model cannot cope with process destruction.

Execution of a process proceeds subject to clocks. In a one cycle of the clock, each

processor may have both activities of input from other processors and an output to

other processors. These activities are treated by a data structure called messages. A

message mainly contains:(1) how many more clocks are needed to reach its destination;

if this is 0, it’s reached its destination, (2)type of the message that tells the received

what action to take, and (3)ID of sender/receiver processor. Notice that the order of

an input and an output at sender and receiver processors must not be reversed. So,

process execution is devided into two steps, one for treating inputs (Step1) and another

for outputs (Step2). Step1 is done at first for each processor and then Step2 is done.

34



Step1

1. If there is a message in receiving buffer whose time data is 0 (this implies that the

message has arrived), then process the message according to its type. Their brief

explanation are as follows.

COM MESSAGE Recieved a message to communicate. Change the processors’

state to NORMAL.

REQUEST PAGE HOME READ Send back a copy page to reuested process.

Rplace page when needed.

REQUEST PAGE HOME WRITE Same as above.

READ COPY PAGE The requested page’s copy arrived.

WRITE COPY PAGE Same as above.

HOME PAGE The requested page arrived from the disk.

Step2

1. If the processor’s state is NORMAL, go on to next steps. Otherwise, skip to 6.

2. If its time to communicate, then process communication and skip to step 6.

3. Selecet execution type uniformly from read, write, and no memory access. If it is

no memory access, then increment the execution time of the processor.

4. Process the execution according to its type.

5. Send every message in the sending buffer.

6. Time data of every message is decremented if they are larger than zero.

Above steps are applied to each processors until next time slice comes. When time slice

comes, the scheduler starts.

35



6.2.1 Memory Access Model

Address of a memory access is calculated randomly as follows. We prepare plural

random nmbers that obey formal distribution with large valued variance to express

locality. First, a choice is made and decided whether the access will be directed to the

process’ own address space or to that of other process’. If accessing other process, a

process is selected uniformly among them. Then one of the distributions is selected

uniformly. The average of the selected distribution is set at a fixed place within the

address space of the destination process. Finaly the address is given randomly obeying

the selected distribution.

6.2.2 Communication Model

The timing and partners of a communication is prepared for every processes before-

hand. As soon as a communication occurs, messages are sent to other partner proces-

sors. That is, receiving processors are assumed to be desiring to have the message at

the time it was sent. This implies that delayed time at receiving processor caused by

memory accesses or another communication is not truely considered.

6.3 Experiment

Everytime a processor experiences an ordinary computation, that is, not waiting for

communication completion or missed pages to come, its execution time is incremented

by one. These values are summed when a simulation finishes. It can be regarded

as total useful time all over the system spend. So, we focus on this value and make

considerations according to it.

36



Chapter 7

Future Work

The simulator of current is a very simple version and many part of it must be improved

to make it much closer to existing systems. The emulation must be as close to reality as

possible to acquire reliable simulation resluts. In additon, it must be reformed to fit for

experiments in which systems with quite large number of processors are concerned.

7.1 System Model

Current model uses FIFO for page replacement algorithm, but much smarter algorithm

like LRU[6] must be implemented. And also, invalidate protocol must be introduced

to memory model.

The model has no structure for interconection networks. So, contentions of memory

accesses and network transactions are not considered in the model. This situation must

be avoided to acquire reliable simultaion results.

A preferable way for expressing various process activities must be exploited. They

include; rate of read/writes and their access pattern for processes; changing of phases;

communication; and forking or destroying processes. Currently communication is

treated as independent of processes and it must be implemented between processes or

within a process.

37



7.2 Kernel-Level Scheduling

The algorithm presented in the paper is a very simple version and requires refinements

followed.

One problem is that it considers only few scheduling constraints. More scheduling

constraints must be studied to find out which is useful. Future algorithms must consider

those constraints. As constraints change, the priority computation method must be

changeds to fit the concept of resource fair-sharing.

Moreover, process migration is left to be included. When applying any kernel-level

scheduling method to a practical system, it must be able to treat process migration.

The most important thing in scheduling method is that we must exploit a practical

iterface to exchange scheduling constraints between use-level and kernel-level.

How the data prefetching affect the kernel-level scheduling is also a wonder. In SSS-

CORE, it is assumed that processor power is not consumed on data transfering between

physical memory and secondary memory. So, the scheduling is planned to be done

with data one time slice before. We suppose the influence of it on system performance

is less and the scheduling method is still effective. But this must be ascertained.

The research did not consider the actual mapping of data structures of scheduling

management tree to processors. The tree is globally existing in the model. The com-

putation of kernel-level scheduling itself is related to the mapping strategy. Since we

assumed that cost required for scheduling is ignorable because of larger valued time

quantum, the mapping and computation strategy must not violate the assumption.

38



Chapter 8

Conclusion

We proposed a kernel level scheduling method for a 2-level scheduling policy that takes

advantage of informations on hierachical system structure and memory usage of each

applicaton. In addition, studies remaining studies and problems that must be settled

to construct a effective kernel-level scheduling method are mentioned.

39



Reference

[1] Songnian Zhou and Timothy Brecht. Processor pool-based scheduling for large-

scale numa muliprocessors. Proceedings of the ACM SIGMETRICS Conference on

Measurement and Modeling of Computer Systems, 25(5):133–142, February 1991.

[2] Anurag Kumar, Senior Member, IEEE, and Rajeev Shorey. Performance analysis and

scheduling of stochasitc fork-join jobs in a multicomputer system. IEEE TRANS-

ACTION ON PARALLEL AND DISTRIBUTED SYSTEMS, 4(10):1147–1164, October

1993.

[3] Thomas E. Anderson, Brian N. Bershad, Edward D.Lazowska, , and Henry M.

Levy. Scheduler activations: Effective kernel support for the user-level management

of parallelism. Proceedings of the Thirteenth ACM Symposium on Operating Systems

Principles, 25(5):95–109, October 1991.

[4] Brian D.Marsh, Micheal L. Scott, Thomas J.LeBlanc, and Evangelos P. Markatos.

First-class user-level threads. Proceedings of the Thirteenth ACM Symposium on Oper-

ating Systems Principles, 25(5):110–121, October 1991.

[5] Kai Li. Ivy: A shared virtual memory system for parallel computing. 1988 Interna-

tional Conference on Paralell Processing, pages 94–101, September 1988.

[6] Abraham Silberschatz, James L. Peterson, and Peter B.Galvin. Operating System

Concepts, chapter 8. Addison-Wesley Publishing Company, Inc., third edition, 1991.

40


