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Abstract

In general-purpose parallel and distributed systems, per-
formance of the protected and virtualized user-level com-
munications and synchronizations is the most crucial issue
to realize efficient execution environments. We proposed
a novel high-speed user-level communication and synchro-
nization scheme “Memory-Based Communication Facilities
(MBCF)” for a general-purpose system with an off-the-shelf
communication-hardware. The MBCF realizes the direct
remote-memory-accesses in user-task-space and offers pro-
grammers and compilers a large shared-memory space.
This paper describes outlines and characteristics of the
MBCF, and evaluates basic performance of the MBCF/Ether
which is the first sample implementation with 100BASE-TX
interfaces. The evaluation tells that its peak bandwidth
at half-duplex mode is 11.2Mbyte/sec and its round-trip
latency is 49�sec. Finally, we introduce a brand-new re-
mote cache scheme “Asymmetric Distributed Shared Mem-
ory (ADSM)”, which is suitable for the MBCF and optimiz-
ing compilers, and show the effects of optimization methods
for the ADSM.

1. Introduction

The Memory-Based Communication Facilities (MBCF)
[1, 2] is a software-only solution for realizing protected
and virtualized high-speed user-level communication and
synchronization. The MBCF is developed for Network of
Workstations (NOW) and distributed memory multiproces-
sors without hardware Distributed Shared Memory (DSM)
mechanisms.

So far, many hardware DSM mechanisms are proposed
but no DSM mechanism has been proved to be sufficiently
general for wide range of applications. Recent WSs and PCs
are very powerful but inexpensive, and the performance of

their network interfaces improves rapidly. Therefore they
can be used as nodes of parallel computers. There are no in-
expensive hardware DSM mechanisms for making WS/PC
clusters, consequently we need alternative methods for effi-
cient user-level communication and synchronization without
specialized hardware mechanisms.

We assume that off-the-shelf Network Interface Cards
(NICs) are equipped in the MBCF system. These cards
have no functionalities for protection or security, transmit
memory image of a packet to other nodes and receive packets
from other nodes into a specified ring buffer in the system
(kernel) space.

There are two factors which produce the major part of
overheads on user-level communication and synchroniza-
tion. The first one is a methodological aspect (includ-
ing functionalities, protocols, packet format). Conven-
tional user-level communication interfaces (for examples,
TCP/IP, UDP/IP and MPI) are message-passing-type ones,
and their functions are limited to remote-write operations
into specific message-buffer addresses in the kernel-space.
To break out of this limitations, we adopt memory-based
operations where arbitrary target addresses and a wide va-
riety of functions can be used. By adopting memory-based
operations, protections and virtualizations in communica-
tions and synchronizations can be replaced with those of
memory accesses. This replacement makes high-speed im-
plementations of the scheme feasible, since advanced ar-
chitectural mechanisms of processors for memory-accesses
can be exploited. The other factor is a software engineering
aspect (implementation methodology). In the conventional
OSs, communications and synchronizations among nodes
(machines) are regarded as usual I/O events like disk op-
erations, and device-drivers for communications and syn-
chronizations have the same data and control structures as
device-drivers for other I/O devices. Consequently, the
device-drivers suffer large overheads that are not neces-
sary for functions of communication and synchronization.



To realize high-performance implementations, the MBCF-
dedicated system-calls and the MBCF-dedicated interrupt
routines have been developed and used, then there is no
operation irrelevant to functions of the MBCF.

2. Memory-Based Communication Facilities

2.1. Outline of the MBCF

The MBCF emulates Memory-Based Processor (MBP[3,
4, 5, 6])’s functions using pure software routines which in-
clude user-level requesting codes (packet sending codes).
In the MBP system, remote memory accesses are invoked
by processors’ memory operations. When a MBP detects
processor’s memory access whose target address belongs to
a remote node, the MBP translates the access information
into an inter-node communication style, makes a packet and
transmits it to the target node. When the MBP in the tar-
get node receives the packet, it executes the remote access
specified in the packet and returns a reply if necessary. On
the other hand, in the MBCF system remote memory ac-
cesses are invoked by explicit system-calls for the MBCF
functions. First a user-program prepares an MBCF packet in
user-mode and executes the MBCF requesting system-call.
Secondly the kernel-level routine of the MBCF-dedicated
requesting system-call makes a inter-node communication-
style packet and transmit it using conventional NICs. Finally
the MBCF-dedicated interrupt routine at the target node re-
ceives the packet and directly executes the remote access
specified in the packet and returns a reply if necessary.

In comparison with the MBP systems, the MBCF sys-
tems suffer with some additional software overheads but
an MBCF packet is not restricted to an access correspond-
ing to processor’s memory operation. Therefore the MBCF
systems enjoy opportunities optimizing the number of com-
munication packets and the amount of communication data
using this packet flexibilities. To put it concretely, large
data can be handled in an MBCF operation and multiple
MBCF operations can be merged into one communication
packet. We call this merged packet a “combined packet”
and this optimizing technique “combining”. If the system
has rather poor communication hardware comparing with
processor power, these optimization opportunities are vital
for efficient execution.

2.2. Protection and Security Mechanism

In the MBCF scheme, the MBCF-dedicated kernel-level
interrupt routine makes a final access to the target space on
the remote memory. If strong protection and security are
needed in the system, powerful capability-check or authen-
tication procedures can be added to the interrupt routine.
However this addition increase the overhead of the MBCF

interrupt routine. To prevent the overhead from increasing,
we developed another smart method exploiting page-aliases
and simple access-key.

In parallel processings, when some errors occur in an
activity, further execution of related activities is probably
meaningless. Owing to this characteristic a simple protec-
tion mechanism which separates the task from other un-
related tasks is enough for parallel processings. In order
to prevent the bad influence of the errors from spreading
to other tasks, the MBCF uses logical address spaces with
memory management mechanism. Only the memory ar-
eas mapped to the target task can be accessed through the
MBCF. To protect the memory from attacks of other tasks,
we adopted unique access-key which represents the right to
access the target memory-space.

On the other hand, in distributed processings (e.g. client-
server model) the server activity must be protected from
errors and attacks of client activities. In this case a strict
protection mechanism which distinguish the working area
of a client from the others’ areas is required. We solved this
issue using unique access-key and page-aliasing. Owing
to the lack of space we describe only basic outline of the
scheme here. When the server is requested MBCF commu-
nication from an untrusted client, in the same node the server
creates an agent (another activity which has an independent
memory-space) which deputizes for it on the communica-
tion with the client. Then the server allocates the working
memory-area for communication with the client and the
same area is also mapped for the agent. In other words,
the area is intra-node shared-memory between the server
and the agent using page-alias mechanisms. After these
preparations on the server node, the agent informs the client
of the agent’s access-key (not the server’s access-key), and
the client communicate with the server using the agent’s
memory-space. Even if the client intends to destroy the
server, it can only damage the agent’s space and cannot stop
the execution of the server activity.

On the MBCF scheme and the MBP scheme, protections
and virtualizations in communications and synchronizations
are replaced with those of memory accesses. This replace-
ment makes high-speed implementations of the mechanisms
feasible. Especially on the MBCF scheme, since the TLBs
and the MMUs of the node processors are exploited for trans-
lations of remote accesses, no additional hardware mecha-
nisms are required.

2.3. Virtual Global Address of the MBCF System

In the MBCF scheme, communications and synchroniza-
tions are performed through virtual inter-node memory loca-
tions. An address of some location is specified by the com-
bination of a logical-task-ID (Ltask) and a logical-address
(Laddr) in the target logical-task and we write the combi-
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nation as “(Ltask:Laddr)”. The task is an abstraction of
a processor’s activity and has its own memory-space, and
it belongs to a node in the MBCF system. In the MBCF
system, a task is specified by the combination of a physical-
node-ID and a physical-task-ID in the physical-node, we
write the combination as “(Pnode:Ptask)”. In user-level ap-
plication programs, only Ltask is used to specify a task. It
is the reason why the additional virtualization enables the
MBCF system to migrate tasks among nodes. The OS for
the MBCF system maintains one translation table for each
task, and the table represents the correspondences between
Ltasks and (Pnode:Ptask)s. When some tasks are migrated
from their original nodes to other nodes, the OS updates the
tables which has entries on the migrated tasks.

Ltask notations for MBCF applications are local and vir-
tual identifiers for individual tasks, then (Pnode,Ptask) no-
tations are used in MBCF inter-node packets. Therefore,
in the MBCF packet, the notation of a global address is
“(Pnode:Ptask:Laddr)”.

2.4. High-Speed Implementation Techniques of the
MBCF

To make implementations of the MBCF as high-
performance as possible, we apply many techniques on soft-
ware engineering and exploit advanced architectural features
of latest commercial processors. We list these techniques
below.

� Direct accesses to target logical spaces

� On-memory-synchronizations

� Cache-conscious programming

� MBCF-dedicated requesting system-call

� MBCF-dedicated receiving interrupt routine

� Wide but fixed variety of MBCF functions

The above techniques does not assume any special-
mechanisms of processors and they are applicable to all com-
puters. The following mechanisms are useful for high-speed
implementation of the MBCF, and they are implemented in
most of latest advanced processors (e.g. SuperSPARC[7],
UltraSPARC[8]).

� TLB corresponding to the coexistence of multiple
contexts

� Physical-address-tagged cache

� Light-weight context switching

� User-privileged memory-access capability in kernel
mode

� Page aliasing capability of the MMU/TLB

� Registers dedicated for system-calls or interrupts

If some architectural mechanisms described above are ab-
sent from a processor, there are some performance degra-
dations but the MBCF can be implemented with software
emulations of the mechanisms.

2.5. Features of the MBCF

In this subsection we summarize and list the general fea-
tures of the MBCF which is described in preceding subsec-
tions before we show an implementation and its performance
using a specific NIC: an Ethernet card.

� protected and virtualized communication and syn-
chronization

� using only commodity hardware

� forming a logical and global shared-memory space

� nonblocking command requests

� fundamental synchronizations based on polling
memory-locations

� guaranteeing fifoness of point-to-point communica-
tions

� guaranteeing arrivals of transmitted packets

� realizing the MBP’s functions (remote-memory oper-
ations)

– remote-memory-accesses

– atomic operations which are executed in the tar-
get node

– multi-casting operations using hierarchical
multi-casting and acknowledge combining[3]

– memory-based fifo[3]

– memory-based signal[3]

– memory-based primitives specialized to a spe-
cific system

� applying high-speed system-software implementation
techniques

� exploiting hardware mechanisms of advanced proces-
sors if available

� optional capabilities for synchronizations

– status reports of execution results of the MBCF
commands

– counter maintenance for elastic memory barrier

– scheduling target tasks into the run-queue of the
OS
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2.6. Qualitative Comparison with the Message-
Passing-Type Communication Mechanisms

In most conventional systems, message-passing-type
interfaces are popular not only as user-programming-
interfaces but also as system-interfaces (in other words,
kernel-user-interfaces or system-call-interfaces). The
MBCF is primarily a system-interface but can be directly
used as a programming interface. By using additional user-
level codes, any message-passing-type interface can be re-
alized in the MBCF scheme. Conversely, all functions
of the MBCF are carried out with any message-passing-
type system-interface and some user-level additional codes.
The selection of programming-interfaces is only an issue of
taste of programmers or language-designers. Therefore, the
problem is which type should be supported as the system-
interfaces of the parallel and distributed systems.

In this subsection we abbreviate Message-Passing-type
System-Interfaces as “MPSI”. The MPSI is less flexible than
the MBCF. We explain the difference on the flexibility-issue
in the MBCF words,

� The MPSI limits target logical addresses to only one
(or a few) implicit message-buffer address.

� The MPSI also limits functions to only one-
type:“MBCF WRITE” (simple remote write).

� In the MPSI system the correspondences among
“send”s and “receive”s are essential. Hence the ex-
ecution order of them is inflexible. In the MBCF
scheme a simple function can be encapsulated into an
atomic MBCF-command and the placement of these
commands is more elastic than “send”s and “receive”s
of the MPSI.

These differences on flexibilities often cause the big dif-
ference on performance. For example, because the implicit
message-buffer of the MPSI is implemented in kernel space,
the data should be copied into another buffer in user-space
when user want to use them. From the inflexibility on the
target-address specifications, the number of data-copies in
the MPSI is essentially greater than the MBCF.

To be flexible, the MBCF accesses directly to the user-
spaces from the interrupt routine (kernel-mode). How-
ever, recent high-end processors (like SuperSPARC[7],
UltraSPARC[8]) has the following mechanisms which can
realize user-level memory-accesses in the kernel-mode with-
out penalties.

� the processor in the kernel-mode can perform
memory-accesses with user-privilege without paying
penalties.

� Many pages from various task-spaces can exist at the
same time in processor’s TLB.

� Changing the current context is inexpensive and costs
only one instruction and a few clock-cycles.

Therefore, without paying any penalties the MBCF get
much more flexibility than the MPSI. In other words, the
MBCF interface is much better than the MPSI.

2.7. Qualitative Comparison with the Active Mes-
sage

The Active Message[9] (AM) is originally invented to
perform high-speed executions of dataflow-type programs
directly on the bare hardware of parallel computers, and
there is no mechanism for protection, security or virtual-
ization. The primary feature of the AM is that a user-level
receive-routine is selected for each message and the receive-
routine for the message is specified in the message itself (the
entry pointer of the receive-routine is included in the mes-
sage).

The SparcStation Active Message[10] (SSAM) is an ex-
tension of the AM for workstation clusters with general-
purpose OSs. In the SSAM scheme a message (packet)
is prepared explicitly by users and transmitted through the
SSAM-dedicated system-call. This packet-sending proce-
dure of the SSAM is almost same as the MBCF but there
is no access-key for securities nor virtualization for task-
migrations. The receiving procedure of the SSAM is much
different from the MBCF. Because the receiving interrupt-
routine is executed in kernel-mode and operates HW reg-
isters of the NIC, the user-level receiving-routine which is
specified in the SSAM message must be invoked indirectly
through some kernel-level interrupt-routine. A kernel-level
temporal receiving-routine is invoked at every interrupt of
the NIC, and the routine receives the packet to the target-
task’s buffer in the kernel-user-shared-space. After receiv-
ing the packet in the buffer, the mechanism like the sig-
nal of the UNIX is used to invoke the specified user-level
receiving-routine, and the user-level routine performs spe-
cialized functions using the data in the temporal buffer. On
the other hand, while guaranteeing protections and virtual-
izations, the MBCF-receiving routine is directly invoked in
kernel-mode when interrupts of packet arrivals occur. Since
user-customizations of functions are prohibited in the MBCF
system, the receiving-routine can be kept safe and fair, and
upper limits of operation costs are known before execution
by kernel.

Copies to the temporal buffers of the SSAM are addi-
tional overheads comparing with the MBCF. Moreover, in
the SSAM system there is a possibility that the invocation
of the receiving-routine and the reply of the message are de-
layed since the routine is invoked and executed only when
the target task is scheduled in the core. In the cases of sim-
ple remote-memory-accesses, it’s most likely that the cost
for invocations of user-level receiving-routines is another
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overhead. On these three points the SSAM is qualitatively
inferior to the MBCF. On the contrary the flexibility that
receiving-functions are able to be customized perfectly is
the strong point of the SSAM. In the MBCF system, how-
ever, there is no limitation of the MBCF-command varieties
and critical functions can be added in the lineup. There-
fore, the perfect customizability of receiving functions is
less significant than the number of data-copies is.

3. Basic Performance of the MBCF/Ether

The Ethernet is the most popular method of local area
networks (LANs) and is also promising as candidate for
the high-speed communications in workstation clusters and
personal-computer clusters. Therefore, we adopted the Eth-
ernet (100BASE-TX[12] and 10BASE-T[11]) as the com-
munication method of the first sample implementation of
the MBCF. We call it the “MBCF/Ether”. The Ethernet
system cannot guarantee the arrival of transmitted packets.
The MBCF/Ether has a considerably complicated protocol
which guarantees packet-arrival and fifoness of point-to-
point communications, but the buffering mechanisms of the
MBCF/Ether can avoid performance degradations in usual
unsaturated communications. Moreover Cache-conscious
programming also prevents the overhead of the complicated
protocol to become large.

In this section we measure performance (peak bandwidth
and latency) using the real system with the MBCF/Ether.

3.1. Environment for the performance evaluation

We use the following workstation cluster to measure basic
performance of the MBCF/Ether.

� Node of the NOW

– Axil 320 model8.1.1
(Sun SPARCstation20 compatible,
85MHz SuperSPARC x 1)

– Fast Ethernet SBus Adapter 2.0

� Network

– Non-switching hub connection of (100BASE-
TX and 10BASE-T)

– Switching hubs are also available but were not
used in the measurements

� Operating system of the NOW

– SSS–CORE/NOW Ver.1.0[13, 14]

� General-purpose operating system

� Scalable system

� Using time-sharing system and partitioning
system together

� Fair and efficient scheduling scheme for
multiple parallel tasks[13, 15]

� High optimizability for user-programs

� Test bed of the MBCF and the ADSM[2, 16]

� Development from scratch to attain high-
speed implementations

Figure 1. NOW with the SSS-CORE/NOW
Ver.1.0 where the full set of the MBCF is im-
plemented

3.2. Peak bandwidth of the MBCF/Ether

Table1 shows peak bandwidthes of the MBCF/100BASE-
TX and the MBCF/10BASE-T. We measure the bandwidth
using the MBCF WRITE (remote-write) commands with
various data-size. Figures of the table are net quanti-
ties which correspond to only payload data without packet
header of the MBCF/Ether or additional data for Ethernet
protocol. The measurement method is that a requester re-
peatedly sends MBCF WRITE commands to a fixed target
without checking any acknowledges except for an acknowl-
edge per 16 transmissions. The acknowledgments every
16 transmissions are used to avoid saturation of the Ether-
net. Ideal values of the peak bandwidthes are 12.5Mbyte/s
for the 100BASE-TX and 1.25Mbyte/s for the 10BASE-T,
and these ideal values correspond to all transmitted data in-
cluding all headers and all additional signals for protocols.
Therefore, the results in the table1 tell that the performance
limits of the NICs and the Ethernet systems are bottle necks
of the MBCF/Ether’s peak bandwidth.
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Table 1. Peak bandwidthes of the MBCF/100BASE-TX and the MBCF/10BASE-T
data size (byte) 4 16 64 256 1024 1408

100BASE-TX (Mbyte/s) 0.29 1.06 4.03 8.28 10.86 11.24
10BASE-T (Mbyte/s) 0.04 0.17 0.48 0.89 1.13 1.17

To compare the MBCF/Ether with ordinary communi-
cation methods in the conventional OS(SunOS4.1.4), we
measure peak bandwidthes of the TCP/IP and the UDP/IP
on the same hardware environment. In these measurements
we use socket libraries of SunOS4.1.4. Coping with mea-
surements of the fine-grained communications, we add the
TCP NODELAY option to the TCP/IP sockets. Because
of guaranteeing fifoness and packet-arrival, the same pro-
tocol as the MBCF/Ether is added to the UDP/IP transmis-
sions with user-level routines. We call the TCP/IP com-
munication of the 100BASE-TX “TCP100/SunOS”. The
UDP/IP communication of the 100BASE-TX are called
“UDP100/SunOS”.

Figure2 shows the peak bandwidthes of the
MBCF100(MBCF/100BASE-TX), the TCP100/SunOS and
the UDP100/SunOS. The x-axis of the figures represents the

MBCF100
UDP100/SunOS
TCP100/SunOS

MB/s

3bytes (data size) x 10
0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

0.00 0.50 1.00 1.50

Figure 2. Comparison of peak bandwidth

data size of one ether-packet, and the y-axis is the data trans-
fer rate. For the TCP100 a drastic performance drop is ob-
served at 512byte packet-size. It is due to the TCP-specific
protocols (congestion avoidance, slow-start and so forth) and
these protocols are poor at eager and repeated transfers. The
start slope of the UDP100/SunOS (or the TCP100/SunOS)
is much softer than that of the MBCF100. Although the

curves of the MBCF100 is almost saturated at data-sizes
over 1024byte owing to the limitation of the hardware, the
UDP100/SunOS cannot reach the half of maximum perfor-
mance of the MBCF100 at the point of the biggest data-size.

3.3. Round-trip latency of the MBCF/Ether

By referencing the clock-counter LSI we measure la-
tencies using the MBCF WRITE command which is ac-
companied with status report options. Just before request-
ing the command we read the start time, and we check
the end time just after recognizing the status return by
polling. The results of the measurements include the over-
heads of referencing the clock-timer. In order to com-
pare latencies between the MBCF/100BASE-TX and usual
communication methods on the conventional OS, we show
Figure3 using the TCP100/SunOS and the UDP100/SunOS
which are described in the previous subsection. The x-
axis represents data size of one packet, and the y-axis is
the latency. Latencies of both the TCP100/SunOS and the

MBCF100
UDP100/SunOS
TCP100/SunOS

sec x 10-6

3Data Size(byte) x 10
0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

0.00 0.50 1.00

Figure 3. Comparison of round-trip latencies

UDP100/SunOS are more than 700�sec and also are more
than 10 times as much as that of the MBCF/100BASE-
TX at data-sizes under 64byte. For the curves of the
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TCP100/SunOS and the UDP100/SunOS we can hardly find
linearities according to data-sizes, because they are hidden
in fluctuations of the measurements with non-deterministic
factors in the conventional OS.

Next we measure the round-trip latencies using a logic
analyzer to acquire accurate values. In this measurement we
use the MBCF WRITE STAT with fixed 4byte data. The
results fluctuate from 48.4�sec to 52.0�sec according to the
cache conditions. The value measured most frequently is
about 49.0�sec.

3.4. Quantitative Comparison with User-level Com-
munication Mechanisms of the MPPs

In this subsection we quantitatively compare the
MBCF/100BASE-TX with several user-level communica-
tion mechanisms of the commercial Massively Parallel Pro-
cessors (MPPs). Those mechanisms of the MPPs have a
greater or a less degree of limitations, for examples some
mechanisms force an application to use them exclusively,
others force the OS to allocate tasks only in gang-scheduling
manner. Besides all mechanisms except for Active Message
type ones are message-passing style and there is no variety
of functions but message-sending. Therefore, in a qualita-
tive comparison the MBCF/100BASE-TX is more protected,
virtualized and varied than the mechanisms of the MMPs,
and superior to them.

Table2 shows the quantitative comparisons on peak band-
width and round-trip latency. All the machines in the table
except the SS20 clusters (SSAM[10] and MBCF) have orig-
inal high-speed communication hardwares which are much
faster than the 100BASE-TX system. The SSAM system
use a 156Mbps ATM NIC which is also faster than the NIC
of the MBCF/100BASE-TX.

The figures in the table except those in the MBCF row are
quoted from following papers. Figures without any marks
are from the paper[10], and figures on SP–1/SP–2 (with z

mark) are from the paper[17].
The implementation of the SSAM in the table have no

mechanism to guarantee packet arrival or FIFO property.
The practical SSAM would suffer larger overheads than
the SSAM in the table. The SP–2 has two entries in the
table: “MPL/p” is a method such that an application exclu-
sively uses the SP–2’s high-speed communication hardware,
“MPL/udp” is a method where the communication library
uses the UDP interface of the SP–2’s OS. The former is not
worth calling a “virtualized” interface, and the latter should
be compared with the MBCF.

Considering two points:

� As for the level of protections and virtualizations, the
MBCF is the highest of all, and

� As for the performance of the raw communication

hardware, the MBCF is the lowest of all,

figures in the table2 show that methodology and implemen-
tation techniques of the MBCF/100BASE-TX are excellent
and remarkable.

4. Asymmetric Distributed Shared Memory

4.1. Outline of the ADSM

To execute shared-memory-based parallel programs effi-
ciently in a system without hardware-remote-cache mech-
anisms, some software cache scheme must be performed
by the OS and/or user codes. In the MBCF system, con-
sidering code optimizations for inter-node communications,
the full user-level cache scheme (User-level DSM:UDSM),
where the MBCF interfaces are directly used in user-level
codes to maintain software-remote-caches, is better than
OS-based software DSMs. In other words, the UDSM
scheme is more suitable to exploit flexibilities of the MBCF
for the optimizations of communication and execution than
OS-based DSMs. However, in the UDSM case the user-
level execution-code must explicitly maintain, check and
modify software-controlled-cache tags. Up to now, nei-
ther processors are fast enough to neglect the overhead of
handling software cache-tags nor optimizing compilers are
sophisticated enough to hide and/or reduce it. Inter-node
communications occur only at shared-write situations and
in usual applications the number of shared-writes is much
less than shared-reads. Considering these characteristics we
introduce a brand-new remote cache scheme “Asymmetric
Distributed Shared Memory (ADSM)” [14, 2].

In conventional page-based (i.e. OS-based) DSMs, not
only read-cache-misses but also shared-writes are supported
by the TLB/MMU mechanisms of node processors using
write-protection traps and page-fault traps. Though the
ADSM is one of page-based cache schemes, only read-
cache-misses are supported by the TLB/MMU mechanisms.
For each shared-write in the ADSM scheme, a proper se-
quence of instructions which maintains the cache consis-
tency of the system is inserted into the user-level execution-
code by the optimizing compiler. In the MBCF system,
the user-level code-sequences include the MBCF-dedicated
system-calls and invalidate (or update) remote caches while
modifying the local cache-states. Since the instructions for
the consistency maintenances at shared-writes are explicitly
inserted in the application codes, there is large room for var-
ious code optimizations. Strategy of handling shared-reads
(read-cache-misses) and that of handling shared-writes are
different. Therefore we call this scheme the “asymmetric”
DSM.

The combination of the MBCF and the ADSM can real-
ize an efficient distributed shared memory environment on
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Table 2. Basic performance of user-level communication mechanisms
Machine Peak bandwidth Round-trip

+ soft (Mbytes/s) latency(�s)

SP–1 + MPL/p 8.3 / 8.7z 56 / 75z

Paragon + NX 7.3 44
CM–5 + Active Message 10.0 12

SP–2 + MPL/udp 10.8z 554.0z

SP–2 + MPL/p 35.5z 78.0z

SS–20 cluster + SSAM (156Mbps ATM) 7.5 52
SS–20 cluster + MBCF (100BASE-TX) 11.2 49

Network of Workstations or distributed-memory multipro-
cessors without DSM-dedicated hardware.

4.2. Optimizations for the ADSM

In this subsection we list the code-optimization tech-
niques which are suitable for the ADSM scheme (and the
UDSM scheme).

� When shared-writes are performed to the contiguous
locations and there is no synchronization point among
them, those consistency-management codes can be
coalesced[18, 16]. The coalescing optimization re-
duces the runtime overheads of local consistency-
maintenances and the number of communications.

� When there are many fine-grain communication pack-
ets whose destinations are the same task of the same
node, those can be combined into a large packet at the
compiling time and/or runtime. The combining op-
timization reduces the number of communications.

� When multiple shared-writes by a node modify the
same location between two contiguous synchroniza-
tion points, they can be neglected except for the last
shared-write. The last-write optimization reduces
the runtime overheads, the number of communica-
tions and the amount of transfered data.

� By changing the instructions for consistency main-
tenance, the compiler can specify various consis-
tency protocols according to the characteristics of tar-
get shared-variables in an application program. The
protocol-switching optimization reduces the num-
ber of communications and the amount of transfered
data.

4.3. Preliminary evaluations of the optimizations

We have implemented a prototype of the compiler[19]
and the runtime system[19] of the ADSM on the SSS–
CORE/NOW ver.1.0. The execution environment is the

same as that of the performance evaluation of the MBCF.
Because the SSS–CORE/NOW ver.1.0 has not supported
user-level page-fault handlers yet, we cannot detect page
fault via traps. In order to detect that the processor attempts
to access the shared page which is not allocated or invalid,
we insert the code checking the corresponding page’s va-
lidity before each shared access. The messages which re-
quest memory-copies or cache invalidations are serviced
through the memory-based signal mechanism of the MBCF.
As for the cache consistency protocol we adopt the SAURC
protocol[14] which is a variation of the LRC protocols[20]
and emulates the AURC protocol[21] with explicit commu-
nication codes.

We evaluate the performance on LU-Contig and Radix of
SPLASH-2 benchmark suit[22] using 4 nodes. The problem
size of LU-Contig is a 512�512 matrix with 16�16 blocks
and that of Radix is 1M sorting keys. Table4.3 shows the
results of LU-Contig and Table4 represents the results of
Radix.

For each table, we evaluate three optimization methods
for the ADSM:

NO No optimizations,

MB Dynamic combining,

AL Static intra-procedual coalescing, and

IA Static inter-procedual coalescing (which includes
AL).

The “Opt” column in the tables expresses the combination
of the optimization methods which are applied to the cor-
responding measurement. The “#CM” column shows the
consistency managing time and also shows the number of
instructions for consistency management.

Since LU-Contig is a simple application that the pro-
cessor accesses the contiguous locations, only with intra-
procedual analysis the compiler can find many opportuni-
ties to coalesce a sequence of instructions for consistency
management. On the other hand, static intra-procedual coa-
lescing on Radix can perform only little speed-up. Though
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Table 3. Effects of optimization methods on LU-Contig (n=512,b=16)
Opt Exec Time Number Of Data Traffic #CM

(sec) Packets (MByte)
NO 417.54 33554528 85.12 11184770
MB 56.08 189035 212.07 11184770
AL 69.90 719561 84.50 753632

MB & AL 18.37 88694 99.0 744928
IA 9.10 3552 6.38 2830

MB & IA 9.03 3550 6.38 2830

Table 4. Effects of optimization methods on Radix (#key = 1M)
Opt Exec Time Number of Data Traffic #CM

(sec) Packets (MByte)
NO 34.05 3180349 42.54 9506802
MB 9.06 44357 50.89 9506802
AL 30.01 3167439 42.53 9437300

MB & AL 8.99 44248 50.73 9437300
IA 3.19 21054 18.11 16480

MB & IA 2.44 9995 11.79 16480

there are large fluctuations on the amount of optimization
effects, all optimizations reduce the execution time of the
applications and the best execution-time is over ten times
faster than no optimization case.

5. Concluding Remarks

We have proposed a user-level high-speed communica-
tion and synchronization scheme: Memory-Based Commu-
nication Facilities (MBCF). Though the MBCF is protected
and virtualized as completely as memory, it is implemented
with off-the-shelf communication hardware and it shows
about the same performance to dedicated communication as
the hardware installed in an MPP system.

In the MBCF scheme protections and virtualizations in
communications and synchronizations are replaced with
those of memory accesses. This replacement makes high-
speed implementations of the scheme feasible, since ad-
vanced architectural mechanisms of processors for memory-
accesses can be exploited.

We have developed the MBCF using the Fast Ethernet
(100BASE-TX), and its peak bandwidth at half-duplex mode
is 11.2Mbyte/sec and its round-trip latency is 49�sec. Its
performance is several times better than usual communica-
tion methods in the conventional OS.

We proposed a brand-new remote cache scheme “Asym-
metric Distributed Shared Memory (ADSM)”, which is suit-
able for the MBCF and optimizing compilers, and made a
prototype compiler with several optimization methods for
communications. By the real executions of the compiled

codes, we found that optimized codes can be executed over
10 times faster than non-optimized ones.

In order to improve the performance of the MBCF/Ether,
we are now porting the SSS–CORE operating system, which
includes the full set of the MBCF/Ether system, to latest
workstations with UltraSPARC CPU and a faster network
interface (Gigabit Ethernet or Fibre Channel).
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