
Implementing Message Passing Communication

with a Shared Memory Communication

Mechanism

by

Kenji Morimoto

A Master Thesis

Submitted to the Graduate School of the University of Tokyo in

Partial Ful�llment of the Requirements for the Degree of Master of

Science in Information Science

March 1999

Abstract

This thesis describes a high-performance implementation of the Message Passing

Interface (MPI) library based on a shared memory communication mechanism.

Our implementation, called MPI/MBCF, combines two protocols to utilize the

shared memory communication mechanism: the write protocol and the eager

protocol. In the write protocol, Remote Write is used for communication with

no bu�ering. In the eager protocol, Memory-Based FIFO is used for bu�ering

by the library. These two protocols are switched autonomously according to the

precedence of send and receive functions.

The performance of the MPI/MBCF was evaluated on a cluster of worksta-

tions. We measured the round-trip time and the peak bandwidth, and executed

the NAS Parallel Benchmarks. The results show that a message passing library

achieves high performance by using a shared memory communication mecha-

nism.

Acknowledgments

I am very grateful to Professor Kei Hiraki for guiding me with a lot of helpful

advice. I would like to express my gratitude with all my heart to Mr. Takashi

Matsumoto. He gave me many useful suggestions. He built the whole infras-

tructure of my work. And he supplied much functionality to the infrastructure

in response to my requests. I also wish to give my thanks to all the members of

Hiraki Laboratory for their help and encouragement.

Contents

1 Introduction 1

2 Preliminaries 4

2.1 Message Passing Interface Standard 4

2.1.1 Overview of the MPI Standard 4

2.1.2 De�nitions and Requirements of the MPI Standard for

Point-to-point Communication Functions 5

2.2 MBCF: Memory-Based Communication Facilities 8

2.2.1 Features of the MBCF . 8

2.2.2 Functionality of the MBCF 10

2.2.3 Performance of the MBCF 12

3 Message Passing Library on Shared Memory 14

3.1 Implementation of Point-to-point Communication Functions . . . 14

3.1.1 Ideas for Point-to-point Communication Functions 15

3.1.2 Details of Implementation of Point-to-point Communication 17

3.1.3 Execution Sequence of Point-to-point Communication . . 25

3.2 Implementation of Other Functionality 26

4 Performance Evaluation 30

4.1 Conditions of Evaluation . 30

4.2 Fundamental Performance . 31

4.2.1 Round-trip Time . 31

i

4.2.2 Peak Bandwidth . 32

4.3 Performance for the NAS Parallel Benchmarks 35

4.3.1 NAS Parallel Benchmarks 35

4.3.2 Conditions for the NPB 36

4.3.3 Results of Execution . 37

4.3.4 Summary of Results for the NPB 40

5 Related Works 43

5.1 MPI Implementations on General Platforms 43

5.1.1 MPICH . 43

5.1.2 LAM/MPI . 43

5.1.3 CHIMP/MPI . 44

5.2 MPI Implementations on MPPs 45

6 Conclusion 46

ii

Chapter 1

Introduction

There are two communication models widely used for parallel machines with dis-

tributed memory: the message passing model and the shared memory model. In

the message passing model, a communication path is established between each

pair of tasks, and communication among tasks is performed by applying send

and receive operations to those paths. This model is an abstraction of trans-

mission media, that is, interprocessor communication networks. In this model,

interprocessor communication networks are considered as communication paths

among tasks. In the shared memory model, on the other hand, address spaces

of all tasks are mapped into a uni�ed address space, and read and write oper-

ations1 to that shared space correspond to communication. This model is an

abstraction of communication targets, that is, processors' memory spaces. In

this model, data transmission among processors is considered as accesses to re-

mote processors' memory. This model considers address spaces as targets, and

is called `memory-based'.

When these two models are considered as communication models, they are

exchangeable; one can emulate the other. Thus the two models are equivalent

in expressiveness. So far, the message passing model is widely used because the

1These operations are not necessarily �ne-grain memory accesses by a load or storemachine

instruction.

1

message passing model is believed to be more e�cient, and many implementa-

tions based on that model are supplied as libraries. This is because (1) usual

shared memory communication mechanisms provide �ne-grain shared memory

access methods alone, and translate each �ne-grain access like wordwise load

and store into �ne-grain actual transmission, (2) shared memory communica-

tion mechanisms are abstracted with the message passing model when viewed

from users, and (3) not remote write but remote read is mainly used because

of the use of invalidation-based coherent caches, so data transmission is de-

layed until the data becomes needed. These problems are not caused by the

shared memory model itself but by implementations, and can be settled with

an improved implementation of the model. In addition, in order to improve

communication performance such as latency and bandwidth, it is essential to

utilize memory-oriented architectural supports, like MMU and cache memory.

The communication based on the shared memory model can receive bene�t

from these supports more directly than the communication based on the mes-

sage passing model. For this reason, parallel machines should provide high-

performance communication functionality based on the shared memory model,

rather than based on the message passing model.

From the above consideration, we hold conjecture that message passing com-

munication implemented with a high-performance shared memory communica-

tion mechanism gives better performance than that implemented with a mes-

sage passing communication mechanism. In this study, we verify our claim

through implementation and experiments. We chose the Message Passing Inter-

face (MPI) Ver. 1.2 [7, 8] for a message passing communication library to be im-

plemented, and used the Memory-Based Communication Facilities (MBCF) [13]

as a base communication mechanism. The MPI library, called MPI/MBCF, has

been implemented on the general-purpose scalable operating system SSS{CORE

[10]. Shared memory communication operations are not applicable directly to

message passing communication, since the message passing model does not con-

tain the idea of `remote address'. We supply noti�cation of remote addresses

for message passing communication with small overhead.

2

The rest of this thesis is organized as follows. Chapter 2 provides a summary

of the standard of the message passing interface we have implemented, and

describes the shared memory communication mechanism we employed for the

basis of the MPI/MBCF. Chapter 3 explains the key point of the MPI/MBCF

in detail, and then describes other parts of the implementation in brief. The

performance evaluation of the MPI/MBCF is shown in Chap. 4. Related works

are described in Chap. 5, and we conclude with a summary in Chap. 6.

3

Chapter 2

Preliminaries

This chapter �rst presents an outline of the standard of the message passing

interface we have implemented. And then, the shared memory communication

mechanism is introduced which we employed for the basis of our implementation.

2.1 Message Passing Interface Standard

2.1.1 Overview of the MPI Standard

The Message Passing Interface (MPI) [7, 8] is a widely used standard interface

for writing message passing programs, especially on parallel machines with dis-

tributed memory. It is standardized at the Message Passing Interface Forum,

and the standardization process is still in progress. There are two standard

interfaces for now: MPI-1.2 and MPI-2; the latter standard includes the former.

Unlike the Parallel Virtual Machine (PVM) [22], which is another widely

used standard for writing message passing programs, the MPI does not de�ne

an executing environment but just de�nes an interface for programming. The

interface is de�ned for C and FORTRAN 77 in MPI-1.2, and for C++ in MPI-2

additionally. MPI-1.2 includes:

� Point-to-point communication

4

� Collective operations

� Process groups

� Communication contexts

� Process topologies

� Environmental management and inquiry

� Pro�ling interface

In addition, MPI-2 includes:

� Process creation and management

� One-sided communication

� External interfaces

� Parallel I/O

For this study, we have implemented MPI-1.2 but not MPI-2. The reasons

of this choice are (1) `process creation and management', `external interfaces',

and `parallel I/O' are not important factors speci�c to the message passing

model, (2) `one-sided communication' is not a component of the message passing

model at all, and is introduced into the MPI standard in very limited and

unnatural form, and (3) MPI-2 is not a widespread standard yet, and there are

few applications which practically use functions speci�c to MPI-2.

2.1.2 De�nitions and Requirements of the MPI Standard

for Point-to-point Communication Functions

Among 129 functions de�ned in MPI-1.2, about 40 functions have e�ects of start-

ing or completing communication. The performance of these functions domi-

nates the performance of the entire MPI library. Especially, the point-to-point

non-blocking send and receive functions, MPI Isend() and MPI Irecv()1, and

1In this thesis, notation of MPI functions and constants follows the C manner.

5

the completion function, MPI Wait(), are fundamentals of other communication

functions. `Non-blocking' means that the function just starts an operation and

should be paired with such a completion function as MPI Wait(). Most commu-

nication functions in the standard can either be implemented with these three

functions or be explained on the analogy of them.

In the MPI standard, MPI Isend() and MPI Irecv() are declared as follows.

int MPI_Isend(void *buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm,

MPI_Request *request);

int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,

int source, int tag, MPI_Comm comm,

MPI_Request *request);

Almost every MPI function returns an integer-typed error code. buf is the

address of the send [receive] bu�er. count is the number of elements in the

send [receive] bu�er. datatype is the type of each element in the send [receive]

bu�er. dest [source] is the rank of the destination [source] process. tag is the

identi�cation tag of the message to be sent [received]. comm is the communicator

(described below), and request is a pointer to the identi�er to be assigned for

the pending send [receive] request.

The objects typed MPI Datatype, MPI Comm, or MPI Request are `opaque

objects'. Each opaque object is either an integer indexing an array of structures

or a pointer to a structure. Memory spaces for actual structures are allocated

by the MPI library.

The communicator speci�es the communication context for a communication

operation. Messages are always received within the context they were sent, and

messages sent in di�erent contexts do not interfere. The communicator also

speci�es the group of processes which participate in the communication with

this communication context. Processes in a group are ranked from 0 to n � 1,

where n is the number of processes in the group. The ranks of one process in

two di�erent communicators are not equal in general.

6

To specify a destination or a source process, the communicator and the rank

of the target process in that communicator are used. In order to distinguish

messages exchanged between a certain pair of a sender and a receiver, an iden-

ti�cation tag is attached to a message. A send operation matches a receive

operation only if all of the following four conditions are satis�ed:

1. Two operations specify the same communicator

2. The send operation speci�es the process as a destination which handles

the receive operation in question

3. The receive operation speci�es the process as a source which handles the

send operation in question, or speci�es MPI ANY SOURCE as a source

4. Two operations specify the same tag number, or the receive operation

speci�es MPI ANY TAG as a tag

The wild cards for a rank and a tag are allowed only in a receive operation. For

a communicator, a wild card can be used in neither operations.

The MPI library must guarantee the arrival of messages. As to the order, the

library must prevent overtaking of messages if they are equivalent in matching

conditions. In other words, the library must guarantee:

� If a sender sends two messages in succession to the same destination, and

both match the same receive operation, then this receive operation does

not receive the second message if the �rst one is still pending

� If a receiver posts two receive operations in succession, and both match

the same message, then the second receive operation does not be satis�ed

by this message if the �rst one is still pending

Furthermore, the library must not prevent overtaking of messages if it is not

prohibited with the above two conditions, and must guarantee progress of com-

munication.

Send operations are classi�ed into four categories according to their behavior

in the case where no matching receive operation has been posted.

7

Standard mode The library moves the message to the bu�ering area provided

by the library if there is some room, and releases the send bu�er as soon

as possible

Bu�er mode The library moves the message to the bu�ering area provided by

the user, and releases the send bu�er immediately

Synchronous mode The library does not need a bu�ering area, and waits for

the issue of the matching receive before releasing the send bu�er

Ready mode The library does not need a bu�ering area and may generate an

error, since it assumes that the matching receive has already been posted

MPI Isend() is a standard mode non-blocking send function. The MPI standard

does not put a lower limit on the size of the bu�ering area provided by the

library for standard mode send functions. It is possible for implementors not

to provide the bu�ering area, and to treat standard mode functions as if they

were synchronous mode ones. If the bu�ering area for standard mode is small

or not provided, however, careless users' programs may fall into deadlock.

2.2 MBCF: Memory-Based Communication Fa-

cilities

2.2.1 Features of the MBCF

The Memory-Based Communication Facilities (MBCF) [13] is a software-based

mechanism for accessing remote memory. It is based on the design of the

Memory-Based Processor (which is a hardware-based mechanism for remote

memory accesses) [12] and of the Strategic Memory System (which is a highly-

functional distributed shared memory system) [11]. Details of the MBCF are

as follows.

1. Direct access to remote memory

The MBCF communicates by reading from and writing to remote memory

8

directly, not by sending messages to a �xed bu�er for communication. This

reduces excessive copy operations of messages.

The address of remote memory is speci�ed in the logical address form.

Therefore, <Node ID>:<Task ID>:<Logical Address> can be used as a

global memory address.

2. E�cient protection and address translation

By making good use of architectural memory management mechanisms

such as MMU, protection of memory and translation of logical addresses

are achieved at processor-clock-level speed.

3. Use of o�-the-shelf network hardware

The MBCF is a software-based mechanism, and does not need such dedi-

cated communication hardware as many of MPPs have. In order to achieve

high performance, however, it is preferable that the following mechanisms

are provided.

� Switching of address spaces with small overhead

� TLB which allows many contexts to be mixed

� Page alias capability

� High-speed processor cache with physical address tags

All of these mechanisms are available on most of the latest microproces-

sors.

4. Channel-less communication

Unlike channel-oriented communication such as user memory mapping

with the Myrinet [24], the MBCF achieves virtualization and protection

dynamically by system calls for communication.

5. Highly-functional operations for remote memory

Since a receiver of an MBCF packet handles it with software, such com-

pound operations as swap, FIFO write, and fetch and add are available as

well as read and write.

9

6. Guarantee for arrival and order of packets

Because the MBCF system takes care of lost or out-of-order packets, users

can make communication as if they were on a reliable network.

2.2.2 Functionality of the MBCF

From among various operations of the MBCF, Remote Write andMemory-Based

FIFO are employed as the basis of our MPI library implementation.

Remote Write

Remote Write is used to write data directly to a remote address space.

To use Remote Write, the sending user should invoke an MBCF system call

and issue an MBCF packet. The header of this packet holds the address to

which the data is written as well as the receiver's node ID and task ID. This

address is represented in the receiving user's logical address space. The packet

can carry as long data as the network permits in one Remote Write invocation.

When the packet arrives at the receiver's communication hardware, the

system-level trap handler awakes and tries to write that packet's data to the

speci�ed area. This trial to write fails if (1) the destination task does not exist,

(2) the destination task does not permit other tasks to modify its memory space,

or (3) the destination address is not within a valid memory page.

The trap handler returns a
ag2 to the sending user which indicates whether

the write operation succeeded or not, if the
ag is required by the user. The

system call for Remote Write is non-blocking, and the sending user can examine

this
ag to know the completion of the write operation.

The receiving user �nds out the completion of the write operation by ob-

servation of the contents of the memory area to be modi�ed, or by some other

implicit context.

2The mechanism for returning a
ag is just the same as Remote Write.

10

Memory-Based FIFO

Memory-Based FIFO is used to send data to a remote FIFO-queue (ring bu�er).

The bu�ering area for a FIFO-queue is taken from the receiving user's address

space, which is speci�ed by the receiving user in advance via an MBCF system

call. The user can register as many queues as space permits.

Memory-Based FIFO, a remote write operation to this queue, is one of vari-

ations of Remote Write. The sending user should issue an MBCF packet of

Memory-Based FIFO in much the same way as the issue of Remote Write. These

two operations are distinguished by the command �eld in the header. The des-

tination address of the Memory-Based FIFO packet points to a structure which

holds boundary information of the objective FIFO-queue.

The system-level trap handler on the receiver's node manages this boundary

information, and tries to enqueue the packet's data. This trial fails if there

is not enough room in the bu�ering area, in addition to for above-mentioned

reasons of protection and security.

The trap handler returns a
ag to the sending user which indicates whether

the enqueue operation succeeded or not, if the
ag is required by the user. The

system call for Memory-Based FIFO is non-blocking, and the sending user can

examine this
ag to know the completion of the enqueue operation.

The receiving user dequeues data by invoking an MBCF system call. Bound-

ary information of the FIFO-queue is managed in this system call.

In order to facilitate continuous issues of Memory-Based FIFO, the MBCF

provides two options for its user. One option is named reply on failure, which

suppresses the issue of the status
ag if the operation (in this case, the enqueue

operation) successfully completes. This option enables a user to issue a series of

Memory-Based FIFO packets suppressing all
ags except one for the last packet.

The other option is named enqueue eagerly. This option enables a user to issue

Memory-Based FIFO eagerly without con�rming that the preceding enqueue

operations complete successfully. This behavior is achieved by rejecting all the

following enqueue operations but an explicit retrying enqueue operation once

11

an enqueue operation fails by the reason of exhaustion of the FIFO-queue.

Memory-Based FIFO can be considered as a highly-functional message pass-

ing mechanism accessible directly from the user-level.

2.2.3 Performance of the MBCF

The performance of the MBCF was evaluated on a cluster of workstations

connected with a 100BASE-TX network. The following machines were used

for measurement: Axil 320 model 8.1.1 (Sun Microsystems SPARCstation 20

compatible, 85MHz SuperSPARC � 1), Sun Microsystems Fast Ethernet SBus

Adapter 2.0 on each workstation, SMC TigerStack 100 5324TX (non-switching

HUB), and Bay Networks BayStack 350T (switching HUB with the full-duplex

mode). The operating system used for measurement is the SSS{CORE Ver. 1.1a

[10]. The one-way latency and the peak bandwidth between two nodes were

measured.

The one-way latency is the time from the invocation of a system call for a

remote access at the source task to the arrival of the data at the destination task,

including the overhead of reading the data. Table 2.1 shows the one-way latency

of Remote Write (MBCF WRITE) andMemory-Based FIFO (MBCF FIFO) for

various data-sizes on a non-switching HUB.

The peak bandwidth is measured by invoking remote accesses continuously.

Table 2.2 shows peak bandwidth of Remote Write and Memory-Based FIFO for

various data-sizes both on a non-switching HUB in the half-duplex mode and

on a switching HUB in the full-duplex mode.

Both of the results show that the performance of the MBCF is very close to

that of the network itself. The MBCF is superior in performance to the com-

munication functions of MPPs, which have dedicated communication hardware

of higher-potential [14].

12

Table 2.1: One-way latency of MBCF with 100BASE-TX in microseconds

data-size (bytes) 4 16 64 256 1024

MBCF WRITE 24.5 27.5 34.0 60.5 172.0

MBCF FIFO 32.0 32.0 40.5 73.0 210.5

Table 2.2: Peak bandwidth of MBCF with 100BASE-TX in Mbytes/s

data-size (bytes) 4 16 64 256 1024 1408

MBCF WRITE, half-duplex 0.31 1.15 4.31 8.56 11.13 11.48

MBCF FIFO, half-duplex 0.31 1.14 4.30 8.53 11.13 11.45

MBCF WRITE, full-duplex 0.34 1.27 4.82 9.63 11.64 11.93

MBCF FIFO, full-duplex 0.34 1.26 4.80 9.62 11.64 11.93

13

Chapter 3

Message Passing Library on

Shared Memory

This chapter describes our implementation of the MPI called MPI/MBCF. Two

point-to-point communication functions, send and receive, are �rst explained in

detail, because their performance has a strong in
uence upon the performance of

the entire library. And then, other parts of the implementation are summarized.

3.1 Implementation of Point-to-point Commu-

nication Functions

Two point-to-point communication functions, MPI Isend() and MPI Irecv(),

are fundamentals of other communication functions, as mentioned above. In or-

der to implement these two functions, we combined two protocols for actual com-

munication by the library. One is the write protocol which uses Remote Write

for communication, and the other is the eager protocol which uses Memory-

Based FIFO. These two protocols are switched dynamically and autonomously

according to the precedence of matching send and receive operations. The fol-

lowing subsections give the explanations of these protocols.

14

3.1.1 Ideas for Point-to-point Communication Functions

It is not a novel idea to apply a shared memory communication mechanism to

message passing communication. The MPICH [9], which is implemented and

distributed as a model MPI implementation at the Argonne National Laboratory

and the Mississippi State University, employs the following three protocols.

Eager protocol The sender sends the message header and data to the receiver

aiming at a pre-�xed location. The receiver takes out the header and

examines matching of the message and pending receive requests. And

then, the receiver takes out the data to the receive bu�er if a matching

receive has been posted, or else to a temporary bu�er.

Rendezvous protocol The sender �rst sends the message header alone. The

receiver examines matching of the header and pending receive requests.

And then the receiver posts a request for the data to the source process

if a matching receive has been posted, or else it waits for an issue of

a matching receive. Finally the sender sends the message data to the

receiver, with a remote memory operation if available1. This protocol

restricts the behavior of a standard mode send operation as if it were a

synchronous mode send operation2.

Get protocol The sender �rst sends the message header alone. The receiver

examines matching of the header and pending receive requests, and di-

rectly read the data from the source process with a remote read operation.

The word `get' is a dialect of `remote read'. This protocol gets the same

restriction and improvement as the rendezvous protocol gets.

Although the rendezvous and get protocols use shared memory communication

operations, they inevitably bring an overhead of a round trip of control messages

1Although there is no description of the use of a remote write in [9], it is obvious that a

remote write is applicable. The rendezvous protocol is originally introduced just for safety.
2There is a modi�ed protocol to overcome this defect; the receiver allocates a temporary

bu�er if the message header comes from the sender before the matching receive, and then

receives the data in that bu�er.

15

after the data gets ready to be sent3.

In order to utilize shared memory communication operations, it is essential

to notify the address of the send [receive] bu�er to the destination [source],

because point-to-point communication functions in the MPI standard do not

accept a remote address as an argument. There is one possible protocol; the

receiver noti�es the address of the receive bu�er and the sender replies with a

remote write operation. According to the above three protocols, matching of

send and receive operations is examined only at the receiver's side. By allowing

matching at the sender's side, we introduce this new protocol.

Write protocol The receiver sends the header to the source process. The

sender examines matching of the header and pending send requests, and

sends the message data to the receiver with a remote write operation.

This protocol is not self-contained for the following two reasons.

1. In the same way as the rendezvous protocol, the write protocol restricts

the behavior of a standard mode send operation as if it were a synchronous

mode send operation. Although this defect can be overcome by allocating

a temporary bu�er at the sender, it is not e�cient, and it does not solve

the problem of delayed transmission of the data until the issue of the

matching receive.

2. If the receiver speci�es MPI ANY SOURCE as a source, it cannot send the

header to just one source process. It is still possible for the receiver to

broadcast the header to all processes in the speci�ed communicator, but

this needs complicated interprocess arbitration4.

The solution for these problems described in this thesis is to combine the write

protocol with the eager protocol. Under the combined protocols, the sender and

the receiver act as follows.

3A remote read operation can be considered as a set of a control message and a replying

remote write message.
4Interprocess arbitration usually implies internode communication.

16

� The receiver sends the header to the source process as a request for sending

(according to the write protocol), if the matching message has not arrived

yet and if the source process is uniquely speci�ed.

� The sender sends the message data to the receiver with a remote write

operation (according to the write protocol) if the matching request has

arrived. Or else the sender sends the message header and data to the

receiver aiming at a pre-�xed location (according to the eager protocol).

The following is a straightforward explanation of our strategy; when the data

gets ready to be sent, the sender immediately sends that data anyway; the

receiver encourages the source process to send data directly.

The MPICH's three protocols are exclusive. They are not used together at

the same time, and one is chosen according to some static conditions such as

the length of data. The MPI/MBCF's two protocols are switched dynamically

and autonomously. It depends on the dynamic precedence of the send and the

receive operations which protocol is actually chosen. Each of the sender and

the receiver may choose a di�erent protocol from the other's at the same time.

Even if so, �nally one protocol becomes rejected and the other accepted in an

autonomous way, as described in the next subsection.

3.1.2 Details of Implementation of Point-to-point Com-

munication

Based on the above strategy, the standard mode non-blocking send function,

MPI Isend(), and the non-blocking receive function, MPI Irecv(), are imple-

mented with the MBCF.

Communication in the Write Protocol

The send function �rst examines whether the matching request for sending has

arrived or not. If it has arrived already, the sender obtains the address of the

receive bu�er. And then the sender transmits the data to that bu�er directly

17

with Remote Write of the MBCF, as illustrated with Fig. 3.1. Solid lines denote

data transfer triggered by the send function. In this case, there is no message

bu�ering by the MPI/MBCF.

The receive function, on the other hand, �rst examines whether the match-

ing message has arrived or not. If it has not arrived yet, the receiver posts

a request for sending to the source process and noti�es the sender of the ad-

dress of the receive bu�er. This request is sent using Memory-Based FIFO. The

MPI/MBCF provides as many FIFO-queues for requests as MPI processes exist.

The receiver posts a request to the i-th FIFO-queue, where i is the identi�ca-

tion number of the receiver process5. The set of FIFO-queues for requests is

separated from that for communication messages. By arranging multiple FIFO-

queues, the MPI/MBCF prevents various packets from mixing, and makes it

easy to handle each queue.

Communication in the Eager Protocol

If the send function is invoked before the receive function, the sender cannot

obtain the address of the receive bu�er, and so cannot send data to that bu�er

directly. In this case, the MPI standard recommends a library to move the data

to a bu�ering area as soon as possible. In the MPI/MBCF, the sender sends the

message with Memory-Based FIFO to the receiver, as shown in Fig. 3.2. Solid

lines denote data transfer triggered by the send function, and a broken line by

the receive function.

The FIFO-queue for messages at the receiver's side acts as a bu�ering area

for standard mode send functions. The MPI/MBCF provides as many FIFO-

queues for messages as MPI processes exist. In order to prevent mixing of

messages from various source processes, the sender sends the message to the

i-th FIFO-queue, where i is the identi�cation number of the sender process.

There is no requirement in the MPI standard for the order or the fairness of

5The identi�cation number of a process is assigned from 0 to N �1 where N is the number

of all existing processes. This number is equal to the rank of that process in the global

communicator MPI COMM WORLD.

18

�
�

�
�

network

buf buf

sender memory receiver memory

HW HW
communication hardware

� ?

�

Figure 3.1: Communication with no bu�ering

�
�

�
�

network

buf buf

HW HW

FIFO

� ?

?

�

Figure 3.2: Communication with single bu�ering

19

handling messages from di�erent sources. Therefore, it does not cause com-

plicated arbitration to maintain multiple FIFO-queues for messages, even if a

receive function speci�es MPI ANY SOURCE as a source.

Bu�ering for Intertwined Communication

The above two methods can handle point-to-point communication successfully if

the order of the sender's send operations corresponds with that of the receiver's

receive operations. There may be two intertwined matching pairs of operations,

however, when these two pairs specify di�erent tags or communicators from

each other. The following is an example of such operations, where MPI Send()

and MPI Recv() are the blocking versions of MPI Isend() and MPI Irecv(),

respectively.

if (my_rank == source) {

MPI_Send(buf1, count, MPI_INT, dest, tag1, comm);

MPI_Send(buf2, count, MPI_INT, dest, tag2, comm);

} else if (my_rank == dest) {

MPI_Recv(buf2, count, MPI_INT, source, tag2, comm, &status);

MPI_Recv(buf1, count, MPI_INT, source, tag1, comm, &status);

}

When the FIFO-queue for messages contains such disordered messages, the

receive function should �rst dequeue non-matching messages, and then it de-

queues the matching message to the receive bu�er. The receiver allocates a

temporary bu�er for a message which is dequeued from the FIFO-queue but

cannot be written to the receive bu�er. The temporarily bu�ered message is

linked to the i-th list of non-matching messages, where i is the identi�cation

number of the sender process. The receive function �rst searches the list of

such messages for the matching one, and then it examines the FIFO-queue.

The behavior of the temporarily bu�ered message is illustrated with Fig. 3.3.

Solid lines denote data transfer triggered by the send function, a broken line by

the matching receive function, and a dotted line by the non-matching receive

20

function.

This method increases the number of data copy operations and adds the

overhead of managing a list of non-matching messages to the overhead of the

receive function, and so reduces the performance of the receive function. In most

of MPI applications and all of the MPI functions of the MPI/MBCF, however,

the order of send operations corresponds with that of receive operations. Thus

this method will not be used so often that it a�ects the total performance.

Elimination of Race Condition

When matching send and receive functions are invoked at about the same time,

the message and the request pass each other. To solve this race condition,

the sender assigns serial numbers to messages. Serial numbers are separately

managed according to the identi�cation number of the destination process. Thus

a series of numbers is shared by the messages enqueued to the same FIFO-queue.

By these numbers, the sender judges the freshness of requests, and does not reply

to a stale request. The detailed usage of these serial numbers is described later.

Serial numbers are assigned also to requests for sending by the receiver.

They are used for detecting disappearance of requests. Although the MBCF

guarantees the arrival of packets, it cannot enqueue a request to a FIFO-queue

if the queue is full, and then it discards the request. For simplicity, the receiver

does not require the MBCF to return a status
ag for the request, nor retry

to post the discarded request. In addition, when the sender dequeues a non-

matching request, it does not construct a list of requests but simply discards that

request. These simple policies cause disappearance of requests. If any request

has been disappeared, the sender must not reply to the succeeding requests, so

it sends messages not with Remote Write but with Memory-Based FIFO to the

FIFO-queue of the receiver. After dequeuing messages from the FIFO-queue,

the receiver posts all unsatis�ed requests again in order to keep them fresh, even

if no request has disappeared. This enables the sender to resume replying to

requests.

21

�
�

�
�

network

buf buf

HW HW

FIFO

list

� ?

?

?

�

Figure 3.3: Communication with double bu�ering

22

The serial numbers assigned to requests are also used for handling receive

functions with MPI ANY SOURCE. When MPI ANY SOURCE is speci�ed as a source

in a receive function, the receiver does not post a request even if a matching

message has not arrived yet. This is because, as mentioned above, complicated

interprocess arbitration becomes needed if the receiver broadcasts a request.

Not the sender but the receiver serializes the messages from various sources

which match the `MPI ANY SOURCE receive', and �xes the actual source. As long

as the actual source is not �xed for the `MPI ANY SOURCE receive', the receiver

must not post any more requests. This causes skipping of requests. Therefore,

even after the actual source is �xed, the following requests must be ignored

by the sender (or not be sent) until all requests are posted again. With serial

numbers of requests, this skipping of requests can be detected at the sender.

The following is the detailed usage of serial numbers of messages and re-

quests. A message header holds a serial number for a request as well as the

serial number of itself. This extra number indicates the serial number which the

receiver should assign to the next request, and is the copy of the number called

next request number. Next request number is greater by one than the serial num-

ber of the request which the sender replied to most recently, and is equal to the

serial number of the request which the sender expect to come next. A request

for sending holds a serial number for a message as well as the serial number of

itself. This extra number is equal to the serial number of the message which the

receiver dequeued most recently, and is called accepted message number. When

the sender dequeues a request, it examines:

� Freshness

Whether the request's accepted message number is equal to the serial num-

ber of the latest sent message

� Succession

Whether the request's serial number is equal to next request number

If these two conditions are satis�ed, the sender �nds that it can safely reply

to the request with Remote Write. If not, the sender sends the message with

23

Memory-Based FIFO. For the receiver, the arrival of a message at a FIFO-queue

implies that either of the two conditions is not satis�ed. In such a case, the

receiver goes through the list of pending receive operations and posts requests

again.

Putting All Together

From the consideration in the previous paragraphs, the standard mode non-

blocking send function, MPI Isend(), is implemented as follows.

1. Examine the FIFO-queue for requests. If it contains a matching request,

and the request is fresh and successive, transmit the data to the receive

bu�er with Remote Memory and �nish. If not, go to step 2.

2. Transmit the message header and data to the FIFO-queue for messages of

the destination with Memory-Based FIFO, and �nish.

The non-blocking receive function, MPI Irecv(), is implemented as follows.

1. Examine the list of non-matching messages temporarily bu�ered from the

FIFO-queue at step 2 of the preceding receives. If it contains a match-

ing message, move that message data to the receive bu�er and �nish. If

not, append the current receive operation to the list of pending receive

operations and go to step 2.

2. Dequeue a message header from the FIFO-queue for messages. If it

matches one of pending receive operations, dequeue the message data to

the matching receive bu�er. Particularly if the dequeued message matches

the current receive operation, then �nish after dequeuing. If it does not

match, allocate a temporary bu�er, append that bu�er to the list of non-

matching messages, dequeue the message data to that bu�er, and go to

step 2. If the FIFO-queue for messages gets emptied while being con-

sumed, go to step 3. If the FIFO-queue is empty from the beginning of

step 2, go to step 4.

24

3. Go through the list of pending receive operations and post requests again,

and �nish.

4. Post just one request corresponding to the current receive operation, and

�nish.

The completion function, MPI Wait(), has an e�ect of advancing communication

as well as an e�ect of waiting for completion. For a send operation, MPI Wait()

retries to send the message with Memory-Based FIFO while the enqueue oper-

ations fail6. For a receive operation, MPI Wait() consumes the FIFO-queue for

messages and waits for the matching message by repeatedly executing step 2

and step 3 of MPI Irecv()7.

3.1.3 Execution Sequence of Point-to-point Communica-

tion

In the previous subsection, the implementation of point-to-point communica-

tion functions is described in detail, especially from the viewpoint of the data

transmission algorithm for each of the sender and the receiver. As stated above,

it depends on the precedence of the send and the receive functions which of the

two communication operations, Remote Write or Memory-Based FIFO, is ac-

tually used for the data transmission. This subsection illustrates the execution

sequence of point-to-point communication in the MPI/MBCF, according to the

precedence of the two functions.

The Case Where Send Precedes Receive

In this case, the eager protocol is applied as shown in Fig. 3.4. The send function

transmits the message with Memory-Based FIFO because no matching request

has arrived. And then the receive function dequeues this message to the receive

bu�er.

6Data transmission with Remote Write always succeeds in the MPI/MBCF.
7The phrase `go to step 4' in step 2 is replaced with `�nish'.

25

The Case Where Receive Precedes Send

In this case, the write protocol is applied as shown in Fig. 3.5. The receive

function posts a request for sending to the sender with Memory-Based FIFO

because no matching message has arrived. And then the send function dequeues

this request, and transmits the message data in reply to the request directly to

the receive bu�er with Remote Write.

The Case Where Send Con
icts with Receive

In this case, each of the send and the receive functions �rst acts as if it preceded

the other. The send function transmits the message with Memory-Based FIFO,

and the receive function posts a request for sending. At the sender's side, the

succeeding send function dequeues this request, and discards it since accepted

message number of the request is older one. At the receiver's side, the succeeding

receive function or the completion function dequeues the message to the proper

receive bu�er. The execution sequence follows the eager protocol after all, as

shown in Fig. 3.6.

3.2 Implementation of Other Functionality

Most of the MPI functions implemented in the MPI/MBCF are independent

of the MBCF. Only the following fundamental functions are dependent on the

MBCF. The number in parentheses indicates the number of functions.

� Point-to-point blocking send or receive (5)

� Point-to-point non-blocking send or receive (5)

� Point-to-point completion (2)

� Point-to-point cancellation (1)

� Collective barrier (1)

� Initialization (1)

26

?

Sender

?

Receiver

MPI Isend() -hhhhhhhhhh-

message
(by MBCF FIFO)

((((((((((�� acknowledgment
(by the MBCF system)

referred by MPI Wait()
?

enqueue

MBCF FIFO
queues

(for messages)

MPI Irecv()�
6B
B
BBN
dequeue

copied to bu�er

Figure 3.4: Execution sequence where send precedes receive (in eager protocol)

?

Sender

?

Receiver

MPI Irecv()�((((((((((�

request for sending
(by MBCF FIFO)

?

enqueue

MBCF FIFO
queues

(for requests)

6
dequeue

MPI Isend() -hhhhhhhhhh- -

message
(by MBCF WRITE)

directly written to bu�er

Figure 3.5: Execution sequence where receive precedes send (in write protocol)

?

Sender

?

Receiver

MPI Isend() -hhhhhhhhhh-((((((((((�
?

enqueue

MBCF FIFO
queues

(for messages)

MPI Wait()�
6B
B
BBN
dequeue

copied to bu�er

MPI Irecv()�((((((((((�
?

enqueue

MBCF FIFO
queues

(for requests)

6
dequeue

B
BBNdiscarded

next MPI Isend() -

Figure 3.6: Execution sequence where send con
icts with receive (in eager pro-

tocol)

27

� Abortion (1)

All sorts of opaque objects are implemented as integers. Each integer is

an index to a �xed-sized pre-allocated array of structures. Each structure is

the entity of an opaque object, and holds information about the object. If the

array of structures becomes fully used, the MPI/MBCF simply aborts. Thus

the exhaustion of opaque objects causes a fatal error in the MPI/MBCF, but it

rarely occurs in practical applications.

The point-to-point send functions other than the standard mode ones are

implemented after the models of the standard mode ones. The point-to-point

cancellation function employs Memory-Based Signal, which enables an MBCF

user (the MPI library in this case) to interrupt another task, and to get that

task to invoke a pre-registered interrupt handler. The interrupt handler for the

cancellation function tries to discard the message or the request to be cancelled8.

Other point-to-point functions are nothing but interfaces for the fundamental

point-to-point functions.

The collective barrier function is implemented not by using point-to-point

communication functions but by using the MBCF directly. Other collective

functions are made up of point-to-point communication functions. The non-

blocking receive function is utilized in order to allow the receive function to

precede the send, and to make full use of Remote Write.

As mentioned in Sect. 2.1.2, a group or a communicator is an integer indexing

to an array of structures since it is an opaque object. The same value is assigned

to the communicators on all processes in the same context. This makes it easy

to exchange communicators.

Process topologies are implemented by using the caching mechanism of com-

municators.

The abortion function usesMemory-Based Signal to kill other MPI processes.

8The MPI standard requires that a cancellation should complete whether it succeeds or

fails, regardless of the status of the peer process. Thus it is not su�cient for cancelling to

send a cancel noti�cation to a remote FIFO, because the MPI/MBCF is a function-call-driven

library.

28

Interfaces for FORTRAN 77 are provided in the form of wrapper functions

written in C. Most of the wrapper functions just call the corresponding MPI

functions in C, giving care to the di�erence between `call by value' and `call by

reference'. Some of them need, however, conversion of arguments and returned

values.

29

Chapter 4

Performance Evaluation

This chapter presents the results of performance evaluation of the MPI/MBCF.

The conditions of the evaluation are �rst described. Next come the results of

fundamental performance evaluation, that is, evaluation of the round-trip time

and the peak bandwidth. And then the performance for arithmetic parallel

applications is shown. For comparison, the results with a TCP-based MPI

implementation are also shown.

4.1 Conditions of Evaluation

The same equipments as stated in Sect. 2.2.3 were used for measurement: a

cluster of workstations connected with a 100BASE-TX network. The operating

system used for measurement is the SSS{CORE Ver. 1.1a, which provides the

MBCF.

To make a comparison, the performance of the MPICH Ver. 1.1 [9] on the

SunOS 4.1.4 was also evaluated with the same equipments. The MPICH employs

TCP sockets for communication when it is used on a cluster of workstations.

Thus it can be said that the MPICH on a cluster of workstations is a message-

based implementation of the MPI. For the SunOS 4.1.4, the network switch

cannot be used in the full-duplex mode owing to limitations of the device driver.

30

In order to examine the e�ect of the write protocol, two di�erent versions of

the MPI/MBCF are used for the performance evaluation. One issues requests

for sending as explained in Sect. 3.1, and the other does not. In the latter

implementation, MPI Isend() always transmits a message with Memory-Based

FIFO, never with Remote Write. In the followings, the former implementation

with requests for sending, or SendReqs, is denoted by SR for short, and the

latter NSR.

4.2 Fundamental Performance

4.2.1 Round-trip Time

The round-trip time between two processes on di�erent nodes was measured on

a non-switching HUB, since there is large disadvantage and little bene�t to the

round-trip time on a switching HUB. In the evaluation program, two processes

�rst invoke MPI Irecv()s in advance. And then one process calls

1. MPI Send()

2. MPI Wait() (for MPI Irecv())

and the other

1. MPI Wait() (for MPI Irecv())

2. MPI Send()

repeatedly. The round-trip time is the time from the invocation of MPI Send()

to the end of MPI Wait() on the former process. For the MPI/MBCF on the

SSS{CORE, the round-trip time is measured for every iteration with a 0.5�s-

resolution counter, and the minimum value is adopted as the round-trip time.

For the MPICH on the SunOS, unfortunately, only a 10�s-resolution clock is

available, so the round-trip time is measured by averaging the time for 1024 iter-

ations, and the minimum value of the average times is adopted. Table 4.1 shows

the round-trip time on every implementation for 0 byte to 4Kbytes messages.

31

SR and NSR are much faster than MPICH. The di�erence between SR and

NSR is caused by the di�erence of Remote Write and Memory-Based FIFO.

Remote Write is faster as shown in Sect. 2.2.3, and is easier to manage because

it does not require explicit acknowledgments. Communication with Memory-

Based FIFO needs one more copy operation than Remote Write needs.

The round-trip time of SR for a 0 byte message is 71�s. Since the one-way

latency of the MBCF for a 4bytes packet is 24.5�s as shown in Sect. 2.2.3, the

additional overhead for implementing an MPI library is small.

4.2.2 Peak Bandwidth

The peak bandwidth between two processes on di�erent nodes was measured

both on a non-switching HUB in the half-duplex mode and on a switching HUB

in the full-duplex mode. In the evaluation program, one process repeatedly sends

messages and the other receives. The communication time is the time from the

�rst invocation of the send function to the barrier synchronization after the

last invocation on the former process. The peak bandwidth is computed from

the total message size divided by the communication time. Table 4.2 shows the

peak bandwidth on every implementation for 4 bytes to 1Mbytes messages. The

results for 4 bytes to 4Kbytes messages are extracted into a graph in Fig. 4.1.

SRH and NSRH denote SR and NSR in the half-duplex mode, and SRF and

NSRF denote SR and NSR in the full-duplex mode respectively.

In general, high bandwidth cannot be gained for small messages owing to

the overhead of send and receive operations. The MPI/MBCF gains, however,

much higher bandwidth than the MPICH, especially for small messages. This

suggests that the MPI/MBCF is suitable for the applications necessarily or

unnecessarily performing �ne-grain communication, as well as for well-formed

applications.

NSR achieves slightly higher bandwidth than SR in the half-duplex mode.

This reveals that the additional packets for `requests for sending' in SR interfere

with the communication of actual data in that mode. In the full-duplex mode,

32

Table 4.1: Round-trip time of MPI with 100Base-TX in microseconds

message size (bytes) 0 4 16 64 256 1024 4096

SR 71 85 85 106 168 438 1026

NSR 112 137 139 154 223 517 1109

MPICH 968 962 980 1020 1080 1255 2195

Table 4.2: Peak bandwidth of MPI with 100Base-TX in Mbytes/s

message size (bytes) 4 16 64 256 1024 4096 16384 65536 262144 1048576

SRH 0.14 0.53 1.82 4.72 8.08 9.72 10.15 9.78 9.96 10.00

NSRH 0.14 0.54 1.89 4.92 8.54 10.21 10.34 10.43 10.02 9.96

SRF 0.14 0.57 1.90 5.33 10.22 11.68 11.77 11.85 11.85 11.86

NSRF 0.15 0.59 1.98 5.51 10.58 11.70 11.78 11.81 11.82 11.82

MPICH 0.02 0.09 0.35 1.27 3.54 6.04 5.59 7.00 7.77 7.07

33

MPI/MBCF (SRH)

MPI/MBCF (NSRH)

MPI/MBCF (SRF)

MPI/MBCF (NSRF)

MPICH

Bandwidth (Mbytes/s)

3Message size (bytes) x 10

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

11.00

12.00

0.00 1.00 2.00 3.00 4.00

Figure 4.1: Peak bandwidth of MPI with 100Base-TX

34

on the other hand, there is little di�erence in bandwidth between SR and NSR,

since requests do not interfere with actual data. Although NSR is inferior to

SR with regard to the round-trip time, the di�erence of the round-trip time is

absorbed to some extent where the peak bandwidth is concerned.

The peak bandwidth of SR is 10.15Mbytes/s in the half-duplex mode and

11.86Mbytes/s in the full-duplex mode. These values are close to the hardware

limit of 100BASE-TX, 12.5Mbytes/s, and to the bandwidth of the MBCF,

11.48Mbytes/s and 11.93Mbytes/s.

4.3 Performance for the NAS Parallel Bench-

marks

4.3.1 NAS Parallel Benchmarks

The NAS Parallel Benchmarks (NPB) [1, 2] is a suite of benchmarks for paral-

lel machines. It is based on the Numerical Aerodynamic Simulation Programs,

which is based at NASA Ames Research Center. The NPB 1.0 [1] de�nes prob-

lems, algorithms to solve problems, classes of problems, and a programming

model. The NPB 2.x [2] provides solver programs written with the MPI. The

NPB consists of the following �ve kernel programs and three computational

uid dynamics (CFD) applications.

� Kernel programs

EP `Embarrassingly parallel', generation of uniformly distributed random

numbers and normally distributed random numbers by the multipli-

cation congruence method

MG Simpli�ed multigrid kernel for solving a 3D Poisson PDE

CG Conjugate gradient method for �nding the smallest eigenvalue of a

large-scale sparse symmetric positive de�nite matrix

FT Fast-Fourier transformation for solving a 3D PDE

35

IS Large-scale integer sort

� CFD applications

LU CFD application using the symmetric SOR iteration

SP CFD application using the scalar ADI iteration

BT CFD application using the 5� 5 block size ADI iteration

In the NPB 2.x, IS is written in C with the MPI, and the others are written

in Fortran 90 with the MPI. Each of the eight problems is classi�ed into �ve

classes according to its problem size con�guration.

Class S For sample execution

Class W For a small-scale cluster of workstations

Class A For a medium-scale cluster of workstations

Class B For a medium-scale MPP system

Class C For a large-scale MPP system

4.3.2 Conditions for the NPB

The applications of the NPB Rev. 2.3 are executed on a switching HUB in the

half-duplex mode, with each MPI process running on a di�erent node from the

others. We did not use a switching HUB in the full-duplex mode, because the

MPICH on the SunOS cannot be run in that mode.

We used gcc-2.7.2.3 and g77-0.5.21 for compiling. The FT kernel program

cannot be compiled with g77, and so is omitted in the followings.

The problem size is �xed to Class W, because the programs of Class A cannot

be executed on SunOS 4.1.4 owing to the shortage of memory.

36

4.3.3 Results of Execution

Characteristics of Programs

Table 4.3 shows the characteristics of the benchmark programs. These were

measured on SR with 8 (9 for SP and BT) processes by inserting counter codes

into the MPI/MBCF.

The communication frequency is computed from the total amount of data

(or the total number of messages) transmitted with MPI functions among all

processes, divided by the execution time. The Remote Write availability rate is

computed from the amount of data transmitted with Remote Write, divided by

the total amount of data.

EP

Table 4.4 shows the execution time of EP. 226 random numbers are computed.

In EP, processes communicate only for gathering results at the �nal stage of

execution. Most part of the execution time is spent for
oating-point calcula-

tions. Thus the result of EP is no more than the
oating-point performance of

the workstation.

MG

Table 4.5 shows the execution time of MG. The problem size is 64 � 64 � 64,

and the number of iterations is 40.

Point-to-point communication operations for messages of around 1Kbytes

are performed very frequently to exchange data across partitioning boundaries.

Since the MPI/MBCF is suitable for �ne-grain communication as mentioned

in Sect. 4.2.2, the performance with the MPI/MBCF is much better than that

with the MPICH.

All of the receive functions in MG specify a wild card MPI ANY SOURCE as a

source. It causes low availability of Remote Write in SR. Properly speaking,

however, the use of MPI ANY SOURCE is not essential in MG. By rewriting the

37

program without MPI ANY SOURCE, SR should achieve much better performance.

CG

Table 4.6 shows the execution time of CG. The problem size is 7000, and the

number of iterations is 15.

Collective reduction operations and point-to-point communication opera-

tions for messages of around 10Kbytes are performed. Although the communi-

cation frequency of CG is close to that of MG, the message size is larger than

MG. Therefore the performance of CG is better than MG.

Additionally, the performance is improved in SR by applying Remote Write

to the half of messages.

IS

Table 4.7 shows the execution time of IS. The problem size is 220, and the

number of iterations is 10.

At each iteration, about 1Mbytes messages are exchanged by collective all-

to-all communication functions. Because the amount of computation is rather

small, the performance of collective operations dominates the performance of

IS more and more as the number of processes is increased. In the MPI/MBCF,

functions for collective operations are written so that the receive functions are

�rst invoked. Thus, in SR, Remote Write enables all-to-all functions to commu-

nicate directly, and improves the whole performance.

LU

Table 4.8 shows the execution time of LU. The problem size is 33 � 33 � 33,

and the number of iterations is 300.

Point-to-point communication operations for some hundred bytes messages

are performed. Although the message size is small, the communication fre-

quency is low as well. Thus the performance of LU is rather good both with

38

Table 4.3: Characteristics of NPB Programs

program EP MG CG IS LU SP BT

communication frequency (Mbytes/s) 0.00 9.68 12.69 13.58 1.89 7.83 5.32

communication frpequency (# of messages/s) 4 4670 2138 466 1199 421 488

Remote Write availability rate (%) 51.10 0.01 53.33 99.22 13.37 49.01 47.24

Table 4.4: Execution time of NPB EP in seconds

of processes 1 2 4 8

SR [speed-up] 121.14 [1.00] 60.51 [2.00] 30.30 [4.00] 15.15 [8.00]

NSR [speed-up] 121.15 [1.00] 60.59 [2.00] 30.30 [4.00] 15.15 [8.00]

MPICH [speed-up] 125.56 [1.00] 60.61 [2.07] 32.13 [3.91] 16.25 [7.73]

Table 4.5: Execution time of NPB MG in seconds

of processes 1 2 4 8

SR [speed-up] 37.34 [1.00] 22.61 [1.65] 14.05 [2.66] 7.44 [5.02]

NSR [speed-up] 37.32 [1.00] 22.62 [1.65] 14.05 [2.66] 8.01 [4.66]

MPICH [speed-up] 38.81 [1.00] 31.30 [1.24] 21.01 [1.85] 13.72 [2.83]

Table 4.6: Execution time of NPB CG in seconds

of processes 1 2 4 8

SR [speed-up] 69.16 [1.00] 37.69 [1.83] 20.94 [3.30] 11.24 [6.15]

NSR [speed-up] 69.13 [1.00] 38.54 [1.79] 21.44 [3.22] 11.81 [5.85]

MPICH [speed-up] 68.75 [1.00] 40.01 [1.72] 27.79 [2.47] 14.59 [4.71]

39

the MPI/MBCF and with the MPICH.

In LU, as well as in MG, the use of MPI ANY SOURCE hinders the use of

Remote Write.

SP

Table 4.9 shows the execution time of SP. The problem size is 36�36�36, and

the number of iterations is 400.

Point-to-point communication operations for messages of around 10Kbytes

are performed. The communication frequency is low, and receive functions

precede send functions, so SR achieves good performance above all.

BT

Table 4.10 shows the execution time of BT. The problem size is 24 � 24 � 24,

and the number of iterations is 200.

Point-to-point communication operations for messages of around 10Kbytes

are performed. Both of SR and NSR achieve good performance, though SR

utilizes Remote Write at a high rate. This is because communication in BT is

organized to hide latency in some degree.

4.3.4 Summary of Results for the NPB

For all programs, the MPI/MBCF achieves much better performance than the

MPICH. Especially when small messages are exchanged frequently (e.g. in MG),

the large overhead of the MPICH makes the performance worse, so the di�erence

in performance between two libraries expands much more. The implementation

of NSR uses Memory-Based FIFO alone, and has a resemblance to MPICH

in that both of them are message-based implementations of the MPI. Since

NSR achieves better performance than MPICH on the very same machines,

Memory-Based FIFO on the SSS{CORE is superior to TCP on the SunOS for

implementing an MPI library.

40

Table 4.7: Execution time of NPB IS in seconds

of processes 1 2 4 8

SR [speed-up] 10.16 [1.00] 6.35 [1.60] 4.51 [2.25] 2.90 [3.50]

NSR [speed-up] 10.16 [1.00] 6.35 [1.60] 4.69 [2.17] 3.72 [2.73]

MPICH [speed-up] 10.25 [1.00] 7.09 [1.45] 5.61 [1.83] 4.81 [2.13]

Table 4.8: Execution time of NPB LU in seconds

of processes 1 2 4 8

SR [speed-up] 1034.09 [1.00] 537.23 [1.92] 289.65 [3.57] 164.55 [6.28]

NSR [speed-up] 1034.56 [1.00] 541.21 [1.91] 294.00 [3.52] 169.63 [6.10]

MPICH [speed-up] 1081.51 [1.00] 611.92 [1.77] 320.70 [3.37] 185.04 [5.84]

Table 4.9: Execution time of NPB SP in seconds

of processes 1 4 9

SR [speed-up] 1277.42 [1.00] 352.34 [3.63] 153.96 [8.30]

NSR [speed-up] 1276.39 [1.00] 352.77 [3.62] 165.01 [7.74]

MPICH [speed-up] 1391.16 [1.00] 475.27 [2.93] 231.66 [6.01]

Table 4.10: Execution time of NPB BT in seconds

of processes 1 4 9

SR [speed-up] 617.67 [1.00] 155.19 [3.98] 67.13 [9.20]

NSR [speed-up] 617.44 [1.00] 155.21 [3.98] 67.65 [9.13]

MPICH [speed-up] 627.29 [1.00] 214.14 [2.93] 96.02 [6.53]

41

Compared with NSR, SR utilizes Remote Write to communicate directly

when receive functions are invoked before send functions (e.g. in CG, IS, LU,

and SP). Although the experiments were made on a half-duplex network, where

requests for sending interfere with the communication of actual data in SR, SR

achieves better performance than NSR. This proves that the combination of

the eager protocol and the write protocol improves performance in applications,

as well as fundamental performance. This also suggests that it is e�ective to

implement a message passing library with a shared memory communication

mechanism.

42

Chapter 5

Related Works

5.1 MPI Implementations on General Platforms

5.1.1 MPICH

The MPICH [9] is a widely used MPI implementation. It is implemented and

distributed as a model MPI implementation simultaneously with the standard-

ization process. The MPICH is available on various platforms, from a cluster of

workstations to an MPP system.

As stated in Sect. 3.1.1, the MPICH employs three protocols: the eager,

rendezvous, and get protocols. Although the latter two protocols can utilize

shared memory communication operations, they inevitably bring an overhead

of a round trip of control messages after the data gets ready to be sent. The

MPICH uses, moreover, TCP sockets for communication when used on a cluster

of workstations; they are not shared memory communicaton operations.

5.1.2 LAM/MPI

The LAM/MPI [5, 4] is another widely used MPI implementation available on

various platforms.

The LAM/MPI is an upper layer of the LAM, which is a parallel software

43

environment. It uses a dedicated and complicated communication mechanism

of the LAM by default. To achieve higher performance, however, it supplies

TCP-based communication.

The LAM/MPI uses two protocols; the eager protocol for small messages

and the rendezvous protocol (without shared memory communication) for large

messages. Additionally it utilizes System V IPC on an SMP system. All of

them are not internode shared memory communication operations.

5.1.3 CHIMP/MPI

The CHIMP/MPI [15, 16, 3] is an MPI implementation for various platforms

with a lower layer, the CHIMP.

The CHIMP/MPI employs two protocols; PTAT and (PT)AT in their words.

The basis for communication is TCP.

The PTAT protocol is a modi�ed rendezvous protocol (without shared mem-

ory communication). In the PTAT protocol, the sender �rst send the message

header with a part of the message data, not the message header alone. Then

the receiver sends an acknowledgment message, and the sender sends the rest of

the message data. If the message is small enough, the second transmission from

the sender is omitted. The PTAT protocol is not identical to the eager protocol

even if the message is small; the PTAT protocol requires an acknowledgment

message from the library on the receiver's side, not from the communication

system1.

The (PT)AT protocol is similar to the write protocol, but does not use shared

memory communication operations. In the (PT)AT protocol, the receiver posts

a request for sending. And then the sender sends the message header and data

aiming at a pre-�xed location, not at the receive bu�er. When this protocol is

applied, the receiver can safely take out the data to the receive bu�er without

a temporary bu�er.

1The communication system will automatically send an acknowledgment packet for the

�rst message from the sender anyway. The additional library-level acknowledgment is used to

avoid race conditions.

44

These two protocols are not employed for shared memory communication

operations.

5.2 MPI Implementations on MPPs

The MPIAP [20, 21] utilizes put and get of Fujitsu AP1000, AP1000+, and

AP3000; it employs the eager protocol and the get protocol. The CRI/EPCC

MPI [6] utilizes the Shared Memory Access library of Cray T3D; it employs the

rendezvous protocol (with shared memory communication) as well as the above

two protocols. Both of these two implementations cannot reduce the overhead

of a round trip of control messages.

The MPI-EMX [23], which was implemented independently of but simul-

taneously with the MPI/MBCF [17, 18, 19], utilizes remote memory write of

EM-X. It employs a similar protocol to the write protocol.

All of the above three are implementations with dedicated communication

hardware on MPPs.

45

Chapter 6

Conclusion

We have implemented a fully equipped MPI library, the MPI/MBCF, with

a shared memory communication mechanism, the MBCF, from scratch. The

MBCF's Memory-Based FIFO is employed in the eager protocol for bu�ering

by the library, and Remote Write is employed in the write protocol for di-

rect transmission with no bu�ering. When a send function precedes a receive

function, Memory-Based FIFO is used to send data without exchanging con-

trol messages. When a receive function precedes, Remote Write is used by the

sender to send data directly to the receiver's address space.

The performance of the library was evaluated on a cluster of workstations

connected with a 100BASE-TX network. The round-trip time was 71�s for a

0 byte message, and the peak bandwidth was 10.15Mbytes/s in the half-duplex

mode and 11.86Mbytes/s in the full-duplex mode. By executing the NAS Par-

allel Benchmarks, it was proved that the MPI/MBCF with Remote Write is

superior in communication performance to the MPI/MBCF without Remote

Write and to the MPICH/TCP. These results give corroborative evidence to

our claim; a message passing library achieves higher performance by using a

shared memory communication mechanism.

The experiments were made for two di�erent operating systems and com-

munication mechanisms on the very same machines with o�-the-shelf hardware.

46

The results point out that it is possible to achieve large improvement of per-

formance by improving the operating system and the communication library,

without modifying applications. This also suggests the e�ectiveness of a cluster

of workstations without dedicated communication hardware.

47

Bibliography

[1] D. Bailey, E. Barszcz, J. Barton, D. Browning, R. Carter, L. Dagum, R. Fa-

toohi, S. Fineberg, P. Frederickson, T. Lasinski, R. Schreiber, H. Simon,

V. Venkatakrishnan, and S. Weeratunga. The NAS parallel benchmarks.

Technical Report RNR-94-007, NASA Ames Research Center, March 1994.

http://www.nas.nasa.gov/NAS/NPB/.

[2] D. Bailey, T. Harris, W. Saphir, R. Wijngaart, A. Woo, and M. Yarrow. The

NAS parallel benchmarks 2.0. Technical Report NAS-95-020, NASA Ames

Research Center, December 1995. http://www.nas.nasa.gov/NAS/NPB/.

[3] A. Bruce, J. Mills, and G. Smith. CHIMP version 2.0 design. Technical Re-

port EPCC-KTP-CHIMP-V2-DESIGN 1.2, Edinburgh Parallel Computing

Centre, February 1994. http://www.epcc.ed.ac.uk/pg/CHIMP/.

[4] G. Burns and R. Daoud. MPI primer / developing with LAM. http:

//www.mpi.nd.edu/lam/, November 1996.

[5] G. Burns, R. Daoud, and J. Vaigl. LAM: An open cluster environment for

MPI. http://www.mpi.nd.edu/lam/, June 1994.

[6] K. Cameron, L. Clarke, and G. Smith. CRI/EPCC MPI for CRAY T3D.

http://www.epcc.ed.ac.uk/t3dmpi/Product/, September 1995.

[7] Message Passing Interface Forum. MPI: A message-passing interface stan-

dard. http://www.mpi-forum.org/, June 1995.

48

[8] Message Passing Interface Forum. MPI-2: Extensions to the message-

passing interface. http://www.mpi-forum.org/, July 1997.

[9] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-performance,

portable implementation of the MPI message-passing interface standard.

Parallel Computing, 22(6):789{828, September 1996.

[10] T. Matsumoto, S. Furuso, and K. Hiraki. Resource management methods

of the general-purpose massively-parallel operating system: SSS{CORE (in

Japanese). In Proc. of 11th Conf. of JSSST, pages 13{16, October 1994.

[11] T. Matsumoto and K. Hiraki. Cache injection and high-performance

memory-based synchronization mechanisms (in Japanese). In IPSJ SIG

Notes ARC-101-15, Vol. 93, No. 71, pages 113{120, August 1993.

[12] T. Matsumoto and K. Hiraki. Distributed shared-memory architecture

using Memory-Based Processors (in Japanese). In Proc. of Joint Symp. on

Parallel Processing '93, pages 245{252, May 1993.

[13] T. Matsumoto and K. Hiraki. Memory-based communication facilities of

the general-purpose massively-parallel operating system: SSS{CORE (in

Japanese). In Proc. of 53rd Annual Convention of IPSJ (1), pages 37{38,

September 1996.

[14] T. Matsumoto and K. Hiraki. MBCF: A protected and virtualized high-

speed user-level memory-based communication facility. In Proc. of Int.

Conf. on Supercomputing '98, pages 259{266, July 1998.

[15] J. Mills, L. Clark, and A. Trew. CHIMP concepts. Technical Report

EPCC-KTP-CHIMP-CONC 1.2, Edinburgh Parallel Computing Centre,

June 1991. http://www.epcc.ed.ac.uk/pg/CHIMP/.

[16] J. Mills, L. Clark, and A. Trew. CHIMP concepts and development. Techni-

cal Report EPCC-TR94-14, Edinburgh Parallel Computing Centre, March

1994. http://www.epcc.ed.ac.uk/pg/CHIMP/.

49

[17] K. Morimoto, T. Matsumoto, and K. Hiraki. The general-purpose scalable

operating system: SSS{CORE | implementation and evaluation of high

performance MPI | (in Japanese). In Proc. of 56th Annual Convention of

IPSJ (1), pages 13{14, March 1998.

[18] K. Morimoto, T. Matsumoto, and K. Hiraki. Implementation of high perfor-

mance MPI with the memory-based communication facilities (in Japanese).

In Proc. of Joint Symp. on Parallel Processing '98, pages 191{198, June

1998.

[19] K. Morimoto, T. Matsumoto, and K. Hiraki. Implementing MPI with the

memory-based communication facilities on the SSS{CORE operating sys-

tem. In V. Alexandrov and J. Dongarra, editors, Recent Advances in Paral-

lel Virtual Machine and Message Passing Interface, volume 1497 of Lecture

Notes in Computer Science, pages 223{230. Springer-Verlag, September

1998.

[20] D. Sitsky and K. Hayashi. Implementing MPI for the Fujitsu AP1000 /

AP1000+ using polling, interrupts and remote copying. In Proc. of Joint

Symp. on Parallel Processing '96, pages 177{184, June 1996.

[21] D. Sitsky and P. Mackerras. System developments on the Fujitsu AP3000.

In P. Mackerras, editor, Proc. of 7th Parallel Computing Workshop,

September 1997.

[22] V. S. Sunderam. PVM: A framework for parallel distributed computing.

Concurrency: Practice and Experience, 2(4):315{339, December 1990.

[23] O. Tatebe, Y. Kodama, S. Sekiguchi, and Y. Yamaguchi. E�cient imple-

mentation of MPI using remote memory write (in Japanese). In Proc. of

Joint Symp. on Parallel Processing '98, pages 199{206, June 1998.

[24] H. Tezuka, A. Hori, Y. Ishikawa, and M. Sato. PM: An operating system

coordinated high performance communication library. In B. Hertzberger

50

and P. Sloot, editors, High-Performance Computing and Networking, vol-

ume 1225 of Lecture Notes in Computer Science, pages 708{717. Springer-

Verlag, April 1997.

51

