Efficient Implementation of Software Release Consistency on
Asymmetric Distributed Shared Memory

Junpei Niwa, Tatsushi Inagaki, Takashi Matsumoto, Kei Hiraki
Department of Information Science, Faculty of Science
University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo, Japan
{niwa, inagaki, tm, hiraki}@is.s.u-tokyo.ac.jp

Abstract

We have proposed an “Asymmetric Distributed
Shared Memory: ADSM?”, that provides users with ef-
ficient shared memory model. The ADSM is a hybrid
system that needs not only the operating system sup-
port but also the compiler support. The ADSM ex-
ecutes a load instruction as the shared-read with the
assistance of virtual memory mechanism. As for the
shared-write, the ADSM executes a sequence of in-
structions for consistency management after the cor-
responding store instruction.

We describe the algorithm to reduce overheads for
consistency management. The algorithm coalesces a
sequence of instructions for consistency management
using the information of affine memory accesses.

The coalescing algorithm is evaluated wusing the
SPLASH-2 benchmark. The performance evaluation
shows that the coalescing algorithm achieves the execu-
tion time improvement compared to the not-optimized
result, ranging from 76% to 85% .

1 Introduction

A shared memory model can reduce the cost of pro-
gramming effort in distributed systems. The main rea-
son is that shared data are easily accessed with a single
address space, that is to say, the programmers take no
account of the location of data.

On distributed systems such as networks of com-
puters, it is necessary to provide the shared mem-
ory model by software. The main reason is that the
hardware approach to implement the shared memory
model requires high cost.

We have proposed a software shared memory
model, Asymmetric Distributed Shared Memory
(ADSM)[6]. In the ADSM, the shared-read is executed
as a single load instruction, using the virtual memory
mechanism. The shared-write is executed as the cor-
responding store instruction and the instructions for
consistency management inserted by the compiler.

In this paper, we propose an algorithm to coalesce a
sequence of instructions for consistency management.
It is a loop-level algorithm that finds affine memory
accesses using the information of the induction vari-
able and the loop-invariant variable.

To evaluate the performance of the algorithm, we
have implemented three protocols: LRC, SAURC

(Software emulated AURC) and HYBRID (hybrid of
LRC and SAURC). We have implemented a proto-
type of the compiler and the runtime system for the
ADSM on a multicomputer Fujitsu AP1000+. We re-
port that overall execution times, as well as detailed
breakdowns of elapsed times, the number of instruc-
tions for consistency management and the number of
messages.

2 Features of the ADSM

The ADSM is an all-software, page-based shared
memory system that realizes user-level protected high-
speed high-functional communications /synchroniza-
tions. The ADSM requires no hardware support like
AURCI1]. It can be implemented on workstation clus-
ters or multicomputers with conventional network in-
terfaces.

In the ADSM, the action to the shared-read is dif-
ferent from that to the shared-write.

e Shared-read:

The shared-read is based on a cache-based shared
virtual memory system[4]. The shared-read is ex-
ecuted as a load instruction from the shared page.
Only when the processor reads from the shared
page that is not allocated or invalid, instructions
for consistency management are invoked by the
read trap routine.

e Shared-write:

The shared-write is realized as consistency man-
agement instructions (such as additional memory
management and remote memory access). The
compiler translates the shared write into a se-
quence of instructions. That is to say, instruc-
tions for consistency management are explicitly
inserted after the corresponding store instruction
by the compiler.

Since instructions for consistency management are
inserted by the compiler, we can perform following
optimizations:

1. The compiler can generate the instructions for
consistency management according to the consis-
tency protocol. That is to say, the ADSM sup-
ports consistency protocol selection per page[5].

2. When a sequence of the shared write is performed
to the contiguous location and there are no syn-
chronization points, the sequence of correspond-
ing instructions for consistency management is
coalesced. The coalescing optimization reduces
the runtime overhead.

3. When there are communication packets whose
destination are the same node, the number of
communication is reduced, combining the packets
by the compiler as well as the operating system.
The combining optimization reduces the overhead
associated with update memory accesses.

3 Protocol Implementation

In order to detect and collect updated data effi-
ciently, we use the write history which is represented
as the the tuple of the store address and the store size.

3.1 LRC Protocol

Our protocol is similar to the Lazy Release
Consistency (LRC)[2] in the TreadMarks[3].

On an acquire point, the requesting processor in-
validates all pages according to the write-notice[2].
The page fault handler obtains only the updated data
rather than the whole page. The updated data can-
not be discarded as long as there are nodes that may
need them, which causes a severe memory consump-
tion problem. Garbage collection must be performed
frequently.

The instructions for consistency management
record the corresponding write history. Our protocol
computes the updated data using the recorded write
history. The computation of the updated data is pro-
portional to the amount of the created write history.

3.2 Software emulated AURC(SAURC)

Protocol

SAURC is a protocol which emulates Automatic
Update Release Consistency(AURC) protocol[1] with-
out special hardware support. The instructions for
consistency management record the corresponding
write history and the corresponding data(we call them
update information). The update information is not
propagated to the home for each shared-write. In or-
der to reduce the number of messages, a series of up-
date information is combined when the home node is
the same. After the home is updated using the update
information, it is discarded.

3.3 HYBRID Protocol

In LRC protocol, more than one remote processor
may have to be visited in order to obtain updated data
at the page fault. In AURC protocol, the processor has
only to visit the home at the page fault. But the whole
page must be fetched from the home. We propose a
hybrid protocol of LRC and SAURC in order to solve
these problems.

Although HYBRID protocol is almost the same to
SAURC, the home does not discard the propagated
update information as well as SAURC but records
them. At the page fault, the processor has only to
visit the home. The home sends to the faulting pro-
cessor only updated data using the recorded update
information.

4 Reducing the overhead of the shared

write

We use an interprocedural pointer analysis[9] for
detecting the write to the shared locations. The
pointer analysis is a context-sensitive algorithm keep-
ing track of which pointers are actually referenced by
a procedure. By the pointer analysis, the compiler de-
tects the variable which contains the shared location
and inserts the instructions for consistency manage-
ment after the corresponding store.

When a sequence of the shared-write is performed
to the contiguous location and the program does not
reach to the synchronization points, the corresponding
sequence of instructions for consistency management
is coalesced.

Each loop has a depth. It is 1 when the loop is
outer-most and it is n when the loop is inner-most
of the n-th loopnest. We represent instructions for
consistency management as a tuple I(A, S). A denotes
the corresponding memory location and S denotes the
corresponding size.

From the program, we enumerate the n-th nested
loopnest that contains the shared write which is always
executed. For each loopnest,

1. We insert instructions for consistency manage-
ment after the corresponding store.

2. depth :=n.

w

. If depth = 0 then end.
4. Take a loop L whose level is depth.

(a) In the loop L, when there is a series
of instructions for consistency management
whose location is contiguous or the same, the
series of instructions for consistency man-
agement is coalesced.

(b) When the synchronization code or the return
code exists in the loop L or inner-loops, goto
4

(c) For each instructions for consistency man-
agement represented as I(A4,S).

i. When A is loop-invariant, the instruc-
tions for consistency management are
hoisted out from the L to the outerloop
of L.

ii. When A is an induction variable and the
variable’s stride(Astriqe) is equal to or
smaller than S, the instructions for con-
sistency management are hoisted from
the L to the outerloop of L. Let ¢ be the
loop count and Aj,,, be the lower bound
of the A. The hoisted instructions
for consistency management are repre-
sented as I (Ajow, (¢ — 1) * Aggrige +59)-

5. depth := depth — 1, and goto 4.

Here is the example code.

for (1 =0; i<mn; i=1+1){
ali]l = al[i] + alpha * b[i];
I (&al[il, sizeof (double));

}
| Coalescing Optimization
for (1 =0; i<mn; i=1+1){
ali] = al[i] + alpha * b[i];
}

I (&al[0], n * sizeof (double));

5 Performance Evaluation

We have implemented a prototype of the compiler
and the runtime system of the ADSM on a multicom-
puter Fujitsu AP1000+[8].

Each node consists of 50MHz Super SPARC with 20
Kbytes I-cache, 16 Kbytes D-cache and 16MB mem-
ory. Nodes are interconnected by a 2-D torus network
whose bandwidth is 25 Mbytes/sec per link.

Because the CellOS of the AP1000+ does not sup-
port user-level page fault handler, we cannot detect
page fault via interrupts. In order to detect that the
processor attempts to access the shared page that is
not allocated or invalid, we insert the code checking
the corresponding page’s validity before each shared
access.

Because it is impossible to handle messages via in-
terrupts on the AP1000+, request messages from re-
mote nodes are serviced through polling mechanism.
We insert polls at every loop backedge and every func-
tion call.

We evaluate the performance on LU-Contig of
SPLASH-2[10] using 8 nodes. The problem size is a
256 %256 matrix with 16x16 blocks. Tablel shows the
results of LU-Contig. We evaluate the optimization
method of coalescing the instructions for consistency
management.

For each table, LRC(*) shows the results when LRC
is selected. SAURC(*) shows the results when SAURC
is selected. HYBRID(*) shows the results when HY-
BRID is selected. *(NO) shows the results when the
compiler does not perform an optimization(coalescing
the instructions for consistency management). *(O)
shows the results when the compiler performs the op-
timization. The “task” shows the computing time.
The “message” shows the time spent in handling re-
mote requests by polling and also shows the ratio of
the number of messages handled by polling to the to-
tal message number. The “PF” shows the page fault
time and also shows the number of the page fault.
The “CM” shows the consistency managing time and
also shows the number of instructions for consistency
management. The “sync”shows the synchronization
time that includes lock/unlock and barrier. The “GC”
shows the time spent in garbage collection and also
shows the number of garbage collection in LRC.

For each protocol, the optimization achieves the ex-
ecution time improvement in comparison to the not-
optimized result, ranging from 76% to 85%. When the
number of instructions for consistency management is
reduced, “CM” time is reduced and the amount of

the created write history is also reduced. Many oper-
ations executed in “PF” time,”sync” time and ”mes-
sage” time are depend on the amount of the created
write history. Therefore when the number of instruc-
tions for consistency management is reduced, "mes-
sage” time, “PF” time "CM” time and ”"sync” time are
all reduced. “task” time is also reduced because the
time to call the function which perform instructions
for consistency management is added to the “task”
time.

Because LU-Contig is an application that the pro-
cessor accesses the contiguous locations, there are
many opportunities to coalesce a sequence of instruc-
tions for consistency management. In our implemen-
tation on the AP1000+, SAURC is best consistency
protocol.

6 Related Work
6.1 OS-based Software DSM

A number of software page-based shared memory
models have been proposed[4, 2, 1].

Writing to the shared location is executed as a sin-
gle store instruction. At this point, the ADSM is dif-
ferent from the existing OS-based Software DSM. The
consistency management instructions are executed in
the write trap routine. In order to execute consistency
management instructions, the write trap routine must
be invoked[4]. In LRC, in order to minimize the num-
ber of trap invocations, techniques such as diff scheme
which computes the page’s difference between the syn-
chronization points have been proposed[2]. But this
diff scheme can be expensive because the whole page
is searched independently of the amount of updated
data.

AURC is LRC supported not by using diff scheme
but by using automatic update hardware[1l]. Auto-
matic update is a mechanism that automatically prop-
agates updates at fine granularity when a mapping has
been established between the local written page and
a remote page. AURC has a home for each shared
page. By automatic update hardware, the shared
writes are propagated to the home without software
overhead. The home is always kept up-to-date. The
consistency of other copies is managed like LRC inval-
idation scheme. When the page fault occurs, fetching
the whole page from the home is only required.

6.2 Compiler-based Software DSM

In the Midway which implements Entry Consis-
tency (EC)[11], each shared data is bound to the syn-
chronization variable. On a lock acquire point, EC
only propagates the updated data associated with that
lock variable.

The compiler detects the shared-write. Every
shared address has a software dirty bit that reflects
whether or not the address has been written. After
each write to shared memory, the compiler inserts in-
structions which set a software dirty bit with that ad-
dress. No optimization is performed. Searching the
software dirty bit region, the processor determines the
updated data.

In Shasta[7], by using instrumentation, the com-
piler inserts the instructions for consistency manage-

Table 1: LU-Contig(256x256 matrix) time in seconds

protocol total | task message PF CM sync GC
LRC(NO) 81.89 | 1.87 0.61 2.27 3.42 317 72.57

88/2720 104 699040 11
LRC(O) 11.95 | 0.63 0.76 3.33 024 260 4.38

178/790 232

49640 1

SAURC(NO) | 13.56 | 1.82

SAURC(0) 3.12 | 0.62

1.14 0.83 492 486 0.00
262/437 210
0.17 0.29 0.56 149 0.00
217/392 210

699040 0

49640 0

HYBRID(NO) [2747 | 1.83

HYBRID(O) 411 | 0.62

4.03 4.28 5.99 11.34 0.00
258/440 204
0.39 0.51 0.71 1.87 0.00
212/356 210

699040 0

49640 0

ment, which implements an Eager Release Consis-
tency. It performs various optimization(e.g. batch-
ing miss checks), but it does not perform optimizing
methods of coalescing a sequence of instructions for
consistency management in the loopnest.

7 Conclusion

We describe the optimization methods on the
ADSM: (1)protocol selection and (2)reduction of the
overheads for consistency management.

We have implemented three consistency proto-
cols:(1)LRC protocol, (2)SAURC protocol and (3)
HYBRID protocol. Our compiler generates the in-
structions for consistency management according to
the consistency protocol.

We introduce an algorithm to coalesce a sequence of
instructions for consistency management in the loop-
nest with the assistance of the affine memory accesses.

Our experiments with SPLASH-2 benchmark on a
multicomputer Fujitsu AP1000+4 shows that our opti-
mization method of reducing overheads for consistency
management is effective.

References
[1] L. Iftode, C. Dubnicki, E. W. Felten, and
K. Li. Improving Release-Consistent Shared Vir-
tual Memory using Automatic Update. In Proc.
of the 2nd Inter. Symp. on HPCA, February 1996.

[2] P. Keleher, A. L. Cox, and W. Zwaenepoel. Lazy
Release Consistency for Software Distributed
Shared Memory. In Proc. of the 19th ISCA, pages
13-21, May 1992.

[3] P. Keleher, S. Dwarkadas, A. L. Cox, and
W. Zwaenepoel. TreadMarks: Distributed Shared
Memory on Standard Workstations and Oper-
ating Systems. In Proc. of the Winter 1994
USENIX Conference, pages 115-131, January
1994.

[4] Kai Li. IVY: A Shared Virtual Memory Sys-
tem for Parallel Computing. In Proc. of the 1988
ICPP, pages 94-101, August 1988.

[5] Takashi Matsumoto. Fine Grain Support Mech-
nisms. In IPSJ Computer Architecture SIG
Notes, volume 89-ARC-77, pages 91-98, July
1989. (in Japanese).

[6] Takashi Matsumoto, Taketo Komaarashi, Shigeru
Uzuhara, Shozo Takeoka, and Kei Hiraki. A
General-Purpose Massively-Parallel Operating
System: SSS-CORE — Implementation Methods
for Network of Workstations —. In IPSJ Operat-
ing System SIG Notes, volume 96-OS-73, pages
115-120, August 1996. (in Japanese).

[7] D. J. Scales, K. Gharachorloo, and C. A.
Thekkath. Shasta: A Low Overhead, Software-
Only Approach for Supporting Fine-Grain Shared
Memory. In Proc. of the 7th Symp. on Archi-
tectural Support for Programming Languages and
Operating Systems (ASPLOS-VII), pages 174—
185, October 1996.

[8] Osamu Shiraki, Yoichi Koyanagi, Nobutaka
Imamura, Kenichi Hayashi, Toshiyuki Shimizu,
Takeshi Horie, and Hiroaki Ishihata. Architec-
ture of highly parallel computer ap1000+. In
Third Parallel Computing Workshop, pages P1—
G-1-P1-G-8, nov 1991.

[9] R. P. Wilson and M. S. Lam. Efficient Context-
Sensitive Pointer Analysis for C Prgrams. In
Proc. of 95 Conf. on PLDI, pages 1-12, June
1995.

[10] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and
A. Gupta. The SPLASH-2 Programs: Charac-
terization and Methodological Considerations. In
Proc. of the 22nd ISCA, pages 24-36, June 1995.

[11] M. J. Zekauskas, W. A. Sawdon, and B. N. Ber-
shad. Software Write Detection for a Distributed
Shared Memory. In Proc. of the 1st Symp. on
OSDI, pages 87-100, November 1994.

